REPLUG: Retrieval-augmented black-box language models S Weijia, M Sewon, Y Michihiro, S Minjoon, J Rich, L Mike, Y Wen-tau ArXiv: 2301.12652, 2023 | 374* | 2023 |
One embedder, any task: Instruction-finetuned text embeddings H Su, W Shi, J Kasai, Y Wang, Y Hu, M Ostendorf, W Yih, NA Smith, ... arXiv preprint arXiv:2212.09741, 2022 | 188 | 2022 |
Fine-grained human feedback gives better rewards for language model training Z Wu, Y Hu, W Shi, N Dziri, A Suhr, P Ammanabrolu, NA Smith, ... Advances in Neural Information Processing Systems 36, 2024 | 178* | 2024 |
Selective annotation makes language models better few-shot learners H Su, J Kasai, CH Wu, W Shi, T Wang, J Xin, R Zhang, M Ostendorf, ... arXiv preprint arXiv:2209.01975, 2022 | 171* | 2022 |
Embedding uncertain knowledge graphs X Chen, M Chen, W Shi, Y Sun, C Zaniolo Proceedings of the AAAI conference on artificial intelligence 33 (01), 3363-3370, 2019 | 146 | 2019 |
Examining gender bias in languages with grammatical gender P Zhou, W Shi, J Zhao, KH Huang, M Chen, R Cotterell, KW Chang arXiv preprint arXiv:1909.02224, 2019 | 136* | 2019 |
Detecting pretraining data from large language models W Shi, A Ajith, M Xia, Y Huang, D Liu, T Blevins, D Chen, L Zettlemoyer arXiv preprint arXiv:2310.16789, 2023 | 124 | 2023 |
Promptcap: Prompt-guided task-aware image captioning Y Hu, H Hua, Z Yang, W Shi, NA Smith, J Luo arXiv preprint arXiv:2211.09699, 2022 | 99* | 2022 |
On tractable representations of binary neural networks W Shi, A Shih, A Darwiche, A Choi arXiv preprint arXiv:2004.02082, 2020 | 94* | 2020 |
Retrieval-augmented multimodal language modeling M Yasunaga, A Aghajanyan, W Shi, R James, J Leskovec, P Liang, ... arXiv preprint arXiv:2211.12561, 2022 | 89 | 2022 |
Trusting your evidence: Hallucinate less with context-aware decoding W Shi, X Han, M Lewis, Y Tsvetkov, L Zettlemoyer, SW Yih arXiv preprint arXiv:2305.14739, 2023 | 79 | 2023 |
Retrofitting contextualized word embeddings with paraphrases W Shi, M Chen, P Zhou, KW Chang arXiv preprint arXiv:1909.09700, 2019 | 73* | 2019 |
RECOMP: Improving retrieval-augmented LMs with context compression and selective augmentation F Xu, W Shi, E Choi The Twelfth International Conference on Learning Representations, 2024 | 67* | 2024 |
Ra-dit: Retrieval-augmented dual instruction tuning XV Lin, X Chen, M Chen, W Shi, M Lomeli, R James, P Rodriguez, J Kahn, ... arXiv preprint arXiv:2310.01352, 2023 | 64 | 2023 |
kNN-Prompt: Nearest Neighbor Zero-Shot Inference W Shi, J Michael, S Gururangan, L Zettlemoyer arXiv preprint arXiv:2205.13792, 2022 | 57* | 2022 |
Nonparametric masked language modeling S Min, W Shi, M Lewis, X Chen, W Yih, H Hajishirzi, L Zettlemoyer arXiv preprint arXiv:2212.01349, 2022 | 56 | 2022 |
Silo language models: Isolating legal risk in a nonparametric datastore S Min, S Gururangan, E Wallace, W Shi, H Hajishirzi, NA Smith, ... arXiv preprint arXiv:2308.04430, 2023 | 42 | 2023 |
Scaling expert language models with unsupervised domain discovery S Gururangan, M Li, M Lewis, W Shi, T Althoff, NA Smith, L Zettlemoyer arXiv preprint arXiv:2303.14177, 2023 | 39* | 2023 |
Do membership inference attacks work on large language models? M Duan, A Suri, N Mireshghallah, S Min, W Shi, L Zettlemoyer, Y Tsvetkov, ... arXiv preprint arXiv:2402.07841, 2024 | 33* | 2024 |
In-context pretraining: Language modeling beyond document boundaries W Shi, S Min, M Lomeli, C Zhou, M Li, V Lin, NA Smith, L Zettlemoyer, ... arXiv preprint arXiv:2310.10638, 2023 | 33* | 2023 |