Chemical Reaction Systems with Toric Steady States M Pérez Millán, A Dickenstein, A Shiu, C Conradi Bulletin of Mathematical Biology, 1-39, 2011 | 154 | 2011 |
Subnetwork analysis reveals dynamic features of complex (bio) chemical networks C Conradi, D Flockerzi, J Raisch, J Stelling Proceedings of the National Academy of Sciences 104 (49), 19175, 2007 | 143 | 2007 |
Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry S Müller, E Feliu, G Regensburger, C Conradi, A Shiu, A Dickenstein Foundations of Computational Mathematics 16 (1), 69-97, 2016 | 129 | 2016 |
Identifying parameter regions for multistationarity C Conradi, E Feliu, M Mincheva, C Wiuf PLoS computational biology 13 (10), e1005751, 2017 | 117 | 2017 |
Using chemical reaction network theory to discard a kinetic mechanism hypothesis C Conradi, J Saez-Rodriguez, E Gilles, J Raisch Systems biology 152 (4), 243, 2005 | 85 | 2005 |
Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space C Conradi, D Flockerzi, J Raisch Mathematical biosciences 211 (1), 105-131, 2008 | 70 | 2008 |
Catalytic constants enable the emergence of bistability in dual phosphorylation C Conradi, M Mincheva Journal of The Royal Society Interface 11 (95), 20140158, 2014 | 64 | 2014 |
Dynamics of posttranslational modification systems: Recent progress and future directions C Conradi, A Shiu Biophysical journal 114 (3), 507-515, 2018 | 63 | 2018 |
A global convergence result for processive multisite phosphorylation systems C Conradi, A Shiu Bulletin of mathematical biology 77 (1), 126-155, 2015 | 51 | 2015 |
Multistationarity in mass action networks with applications to ERK activation C Conradi, D Flockerzi Journal of mathematical biology 65, 107-156, 2012 | 51 | 2012 |
Multistationarity in Sequential Distributed Multisite Phosphorylation Networks K Holstein, D Flockerzi, Conradi, Carsten Bulletin of Mathematical Biology 75 (11), 2028-2058, 2013 | 40 | 2013 |
N-site Phosphorylation Systems with 2N-1 Steady States D Flockerzi, K Holstein, C Conradi Bulletin of Mathematical Biology 76 (8), 1892-1916, 2014 | 30 | 2014 |
Emergence of oscillations in a mixed-mechanism phosphorylation system C Conradi, M Mincheva, A Shiu Bulletin of mathematical biology 81, 1829-1852, 2019 | 27 | 2019 |
Switching in mass action networks based on linear inequalities C Conradi, D Flockerzi SIAM Journal on Applied Dynamical Systems 11 (1), 110-134, 2012 | 27 | 2012 |
Multistationarity in the space of total concentrations for systems that admit a monomial parametrization C Conradi, A Iosif, T Kahle Bulletin of Mathematical Biology 81, 4174-4209, 2019 | 22 | 2019 |
Multistability of signal transduction motifs J Saez-Rodriguez, A Hammerle-Fickinger, O Dalal, S Klamt, ED Gilles, ... Systems Biology, IET 2 (2), 80-93, 2008 | 22 | 2008 |
Detecting binomiality C Conradi, T Kahle Advances in Applied Mathematics 71, 52-67, 2015 | 17 | 2015 |
On the existence of Hopf bifurcations in the sequential and distributive double phosphorylation cycle C Conradi, E Feliu, M Mincheva arXiv preprint arXiv:1905.08129, 2019 | 16 | 2019 |
Multistationarity in biochemical networks: results, analysis, and examples C Conradi, C Pantea Algebraic and combinatorial computational biology, 279-317, 2019 | 15 | 2019 |
The Process-Interaction-Model: a common representation of rule-based and logical models allows studying signal transduction on different levels of detail K Kolczyk, R Samaga, H Conzelmann, S Mirschel, C Conradi BMC bioinformatics 13, 1-20, 2012 | 15 | 2012 |