关注
Yihan Jiang
Yihan Jiang
Aira Technology
在 uw.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Improving Federated Learning Personalization via Model Agnostic Meta Learning
Y Jiang, J Konečný, K Rush, S Kannan
NeurIPS 2019 FL workshop, arXiv preprint arXiv:1909.12488, 2019
5982019
Communication Algorithms via Deep Learning
H Kim, Y Jiang, R Rana, S Kannan, S Oh, P Viswanath
Sixth International Conference on Learning Representations (ICLR), 2018
2572018
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels
Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath
NeurIPS 2019 poster, 2019
1492019
Deepcode: Feedback codes via deep learning
H Kim, Y Jiang, S Kannan, S Oh, P Viswanath
Advances in neural information processing systems 31, 2018
1152018
LEARN Codes: Inventing Low-latency Codes via Recurrent Neural Networks
Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath
IEEE International Conference on Communications (ICC) 2019, 2018
912018
DeepTurbo: Deep Turbo Decoder
Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath
SPAWC 2019, https://arxiv.org/abs/1903.02295, 2019
572019
Deepcode: Feedback codes via deep learning
H Kim, Y Jiang, S Kannan, S Oh, P Viswanath
IEEE Journal on Selected Areas in Information Theory 1 (1), 194-206, 2020
492020
MIND: Model Independent Neural Decoder
Y Jiang, H Kim, H Asnani, S Kannan
SPAWC 2019, 2019
442019
Joint channel coding and modulation via deep learning
Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath
2020 IEEE 21st International Workshop on Signal Processing Advances in …, 2020
182020
Systems and methods for utilizing dynamic codes with neural networks
R Gopalan, A Chandrasekher, Y Jiang
US Patent 11,088,784, 2021
152021
Improving federated learning personalization via model agnostic meta learning. arXiv 2019
Y Jiang, J Konecný, K Rush, S Kannan
arXiv preprint arXiv:1909.12488, 0
13
Systems and methods for artificial intelligence discovered codes
R Gopalan, A Chandrasekher, Y Jiang
US Patent 11,580,396, 2023
112023
Improving federated learning personalization via model agnostic meta learning. arXiv
Y Jiang, J Konečný, K Rush, S Kannan
arXiv preprint arXiv:1909.12488, 2019
102019
Convergent multi-bit feedback system
A Chandrasekher, R Gopalan, Y Jiang, A Rahimzamani
US Patent 11,368,251, 2022
92022
Feedback turbo autoencoder
Y Jiang, H Kim, H Asnani, S Oh, S Kannan, P Viswanath
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
92020
Turbo autoencoder with a trainable interleaver
K Chahine, Y Jiang, P Nuti, H Kim, J Cho
ICC 2022-IEEE International Conference on Communications, 3886-3891, 2022
82022
Targeting the pathological network: Feasibility of network-based optimization of transcranial magnetic stimulation coil placement for treatment of psychiatric disorders
Z Cao, X Xiao, Y Zhao, Y Jiang, C Xie, ML Paillère-Martinot, E Artiges, Z Li, ...
Frontiers in Neuroscience 16, 1079078, 2023
72023
Adaptive payload extraction and retransmission in wireless data communications with error aggregations
A Chandrasekher, R Gopalan, Y Jiang, A Rahimzamani
US Patent 11,368,250, 2022
72022
Improving federated learning personalization via model agnostic meta learning. CoRR abs/1909.12488 (2019)
Y Jiang, J Konečný, K Rush, S Kannan
61909
Improving federated learning personalization via model agnostic meta learning, 2019
Y Jiang, J Konecný, K Rush, S Kannan
arXiv preprint arXiv:1909.12488, 1909
61909
系统目前无法执行此操作,请稍后再试。
文章 1–20