SchNet - a deep learning architecture for molecules and materials KT Schütt, HE Sauceda, PJ Kindermans, A Tkatchenko, KR Müller The Journal of Chemical Physics 148 (24), 241722, 2018 | 1953 | 2018 |
Quantum-chemical insights from deep tensor neural networks KT Schütt, F Arbabzadah, S Chmiela, KR Müller, A Tkatchenko Nature Communications 8 (13890), 2017 | 1601 | 2017 |
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions KT Schütt, PJ Kindermans, HE Sauceda, S Chmiela, A Tkatchenko, ... Advances in Neural Information Processing System 30, 992--1002, 2017 | 1365 | 2017 |
Machine Learning of Accurate Energy-Conserving Molecular Force Fields S Chmiela, A Tkatchenko, HE Sauceda, I Poltavsky, KT Schütt, KR Müller Science Advances 3 (5), e1603015, 2017 | 1300 | 2017 |
Machine learning force fields OT Unke, S Chmiela, HE Sauceda, M Gastegger, I Poltavsky, KT Schütt, ... Chemical Reviews 121 (16), 10142-10186, 2021 | 1050 | 2021 |
The (un) reliability of saliency methods PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ... Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019 | 811 | 2019 |
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties KT Schütt, H Glawe, F Brockherde, A Sanna, KR Müller, EKU Gross Phys. Rev. B 89 (20), 205118, 2014 | 559 | 2014 |
Equivariant message passing for the prediction of tensorial properties and molecular spectra KT Schütt, OT Unke, M Gastegger Proceedings of the 38th International Conference on Machine Learning 139 …, 2021 | 557 | 2021 |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions KT Schütt, M Gastegger, A Tkatchenko, KR Müller, RJ Maurer Nature Communications 10 (1), 1-10, 2019 | 474 | 2019 |
Learning how to explain neural networks: PatternNet and PatternAttribution PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne 6th International Conference on Learning Representations, 2018 | 469* | 2018 |
iNNvestigate neural networks! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... Journal of machine learning research 20 (93), 1-8, 2019 | 441 | 2019 |
SchNetPack: A Deep Learning Toolbox For Atomistic Systems KT Schütt, P Kessel, M Gastegger, K Nicoli, A Tkatchenko, KR Müller Journal of chemical theory and computation 15 (1), 448-455, 2019 | 426 | 2019 |
XAI for graphs: explaining graph neural network predictions by identifying relevant walks T Schnake, O Eberle, J Lederer, S Nakajima, KT Schütt, KR Müller, ... arXiv preprint arXiv:2006.03589, 2020 | 305* | 2020 |
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects OT Unke, S Chmiela, M Gastegger, KT Schütt, HE Sauceda, KR Müller Nature communications 12 (1), 7273, 2021 | 257 | 2021 |
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules N Gebauer, M Gastegger, KT Schütt Advances in Neural Information Processing Systems, 7566-7578, 2019 | 241 | 2019 |
Perspective on integrating machine learning into computational chemistry and materials science J Westermayr, M Gastegger, KT Schütt, RJ Maurer The Journal of Chemical Physics 154 (23), 2021 | 178 | 2021 |
Inverse design of 3d molecular structures with conditional generative neural networks NWA Gebauer, M Gastegger, SSP Hessmann, KR Müller, KT Schütt Nature communications 13 (1), 973, 2022 | 174 | 2022 |
Machine learning meets quantum physics KT Schütt, S Chmiela, OA Von Lilienfeld, A Tkatchenko, K Tsuda, ... Lecture Notes in Physics, 2020 | 155 | 2020 |
Investigating the influence of noise and distractors on the interpretation of neural networks PJ Kindermans, K Schütt, KR Müller, S Dähne arXiv preprint arXiv:1611.07270, 2016 | 148 | 2016 |
Roadmap on machine learning in electronic structure HJ Kulik, T Hammerschmidt, J Schmidt, S Botti, MAL Marques, M Boley, ... Electronic Structure 4 (2), 023004, 2022 | 136 | 2022 |