Predicting the effective atomic number of glass systems using machine learning algorithms MI Sayyed, A Benhadjira, O Bentouila, KE Aiadi Radiation Physics and Chemistry 217, 111479, 2024 | 9 | 2024 |
Judd–Ofelt parameters prediction of Er+ 3 and Nd+ 3 doped oxide glasses using machine learning models A Benhadjira, O Bentouila, KE Aiadi, MA Bourenane Optik 285, 170946, 2023 | 5 | 2023 |
Artificial neural network approach for calculating mass attenuation coefficient of different glass systems A Benhadjira, MI Sayyed, O Bentouila, KE Aiadi Nuclear Engineering and Technology 56 (1), 100-105, 2024 | 3 | 2024 |
One dimensional Bose–Einstein condensate under the effect of the extended uncertainty principle A Benhadjira, A Benkrane, O Bentouila, H Benzair, KE Aiadi Physica Scripta 99 (5), 055224, 2024 | 2 | 2024 |
Judd-Ofelt parameters: Bayesian inference and deep learning approach A BENHADJIRA Université Kasdi Merbah, Ouargla, 2021 | 2 | 2021 |
Study of Bose–Einstein condensate in the presence of the extended uncertainty principle: infinite potential well A Benkrane, A Benhadjira Physica Scripta 99 (7), 075242, 2024 | | 2024 |
Study of Bose-Einstein condensate in the presence of the extended uncertainty principle: infinite potential well B abdelhakim, A Benhadjira Physica Scripta, 2024 | | 2024 |
Effects of the new type of extended uncertainty principle on Van der Waals black hole thermodynamics: A theoretical and deep learning approach A Benkrane, DE Zenkhri, A Benhadjira Modern Physics Letters A 39 (10), 2450041, 2024 | | 2024 |