关注
Zoubin Ghahramani
Zoubin Ghahramani
Professor, University of Cambridge, and Distinguished Researcher, Google
在 eng.cam.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Dropout as a bayesian approximation: Representing model uncertainty in deep learning
Y Gal, Z Ghahramani
international conference on machine learning, 1050-1059, 2016
100922016
Semi-supervised learning using Gaussian fields and harmonic functions
X Zhu, Z Ghahramani, J Lafferty
Proceedings of the Twentieth International Conference on Machine Learning …, 2003
5694*2003
An introduction to variational methods for graphical models
MI Jordan, Z Ghahramani, TS Jaakkola, LK Saul
Machine learning 37, 183-233, 1999
53821999
An internal model for sensorimotor integration
DM Wolpert, Z Ghahramani, MI Jordan
Science 269 (5232), 1880-1882, 1995
41891995
Active learning with statistical models
DA Cohn, Z Ghahramani, MI Jordan
Journal of Artificial Intelligence Research 4, 129--145, 1996
25021996
Computational principles of movement neuroscience
DM Wolpert, Z Ghahramani
Nature Neuroscience 3, 1212-1217, 2000
24562000
Sparse Gaussian processes using pseudo-inputs
E Snelson, Z Ghahramani
Advances in Neural Information Processing Systems 18, 1257--1264, 2006
22772006
Probabilistic machine learning and artificial intelligence
Z Ghahramani
Nature 521 (7553), 452-459, 2015
21892015
Learning from labeled and unlabeled data with label propagation
X ZhuЃ, Z GhahramaniЃн
ProQuest number: information to all users, 2002
20162002
A theoretically grounded application of dropout in recurrent neural networks
Y Gal, Z Ghahramani
Advances in neural information processing systems 29, 2016
19892016
Factorial hidden Markov models
Z Ghahramani, M Jordan
Advances in neural information processing systems 8, 1995
18761995
Deep bayesian active learning with image data
Y Gal, R Islam, Z Ghahramani
International conference on machine learning, 1183-1192, 2017
18212017
A unifying review of linear Gaussian models
S Roweis, Z Ghahramani
Neural computation 11 (2), 305-345, 1999
13281999
Kronecker graphs: an approach to modeling networks.
J Leskovec, D Chakrabarti, J Kleinberg, C Faloutsos, Z Ghahramani
Journal of Machine Learning Research 11 (2), 2010
13042010
An introduction to hidden Markov models and Bayesian networks
Z Ghahramani
International journal of pattern recognition and artificial intelligence 15 …, 2001
12602001
Unsupervised learning
Z Ghahramani
Summer school on machine learning, 72-112, 2003
11132003
Perspectives and problems in motor learning
DM Wolpert, Z Ghahramani, JR Flanagan
Trends in cognitive sciences 5 (11), 487-494, 2001
10842001
Simultaneous localization and mapping with sparse extended information filters
S Thrun, Y Liu, D Koller, AY Ng, Z Ghahramani, H Durrant-Whyte
The international journal of robotics research 23 (7-8), 693-716, 2004
10742004
The EM algorithm for mixtures of factor analyzers
Z Ghahramani, GE Hinton
Technical Report CRG-TR-96-1, University of Toronto, 1996
9991996
Infinite latent feature models and the Indian buffet process
T Griffiths, Z Ghahramani
Advances in Neural Information Processing Systems 18, 475--482, 2006
960*2006
系统目前无法执行此操作,请稍后再试。
文章 1–20