关注
Eli Bingham
Eli Bingham
Basis / Broad Institute of MIT and Harvard
在 broadinstitute.org 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Pyro: Deep universal probabilistic programming
E Bingham, JP Chen, M Jankowiak, F Obermeyer, N Pradhan, ...
The Journal of Machine Learning Research 20 (1), 973-978, 2019
13512019
Variational Bayesian optimal experimental design
A Foster, M Jankowiak, E Bingham, P Horsfall, YW Teh, T Rainforth, ...
Advances in Neural Information Processing Systems 32, 2019
1422019
Tensor variable elimination for plated factor graphs
F Obermeyer, E Bingham, M Jankowiak, N Pradhan, J Chiu, A Rush, ...
International Conference on Machine Learning, 4871-4880, 2019
232019
Functional Tensors for Probabilistic Programming
F Obermeyer, E Bingham, M Jankowiak, D Phan, JP Chen
arXiv preprint arXiv:1910.10775, 2019
222019
Pyro-Velocity: Probabilistic RNA Velocity inference from single-cell data
Q Qin, E Bingham, G La Manno, DM Langenau, L Pinello
bioRxiv, 2022.09. 12.507691, 2022
102022
Transpiling Stan models to Pyro
JP Chen, R Singh, E Bingham, N Goodman
The International Conference on Probabilistic Programming (PROBPROG), 2018
32018
Pyro: Deep probabilistic programming
B Eli, JP Chen, M Jankowiak, T Karaletsos, F Obermeyer, N Pradhan, ...
32017
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
R Agrawal, S Witty, A Zane, E Bingham
arXiv preprint arXiv:2403.00158, 2024
12024
Leveraging conditional independence in Pyro
E Bingham, F Obermeyer, M Jankowiak, N Pradhan, N Goodman
The International Conference on Probabilistic Programming (PROBPROG), 2018
2018
Automated enumeration of discrete latent variables
F Obermeyer, E Bingham, M Jankowiak, N Pradhan, N Goodman
The International Conference on Probabilistic Programming (PROBPROG), 2018
2018
Characterizing how Visual Question Answering models scale with the world
E Bingham, P Molino, P Szerlip, F Obermeyer, ND Goodman
系统目前无法执行此操作,请稍后再试。
文章 1–11