Real-valued (medical) time series generation with recurrent conditional gans C Esteban, SL Hyland, G Rätsch arXiv preprint arXiv:1706.02633, 2017 | 863 | 2017 |
Early prediction of circulatory failure in the intensive care unit using machine learning SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ... Nature medicine 26 (3), 364-373, 2020 | 313 | 2020 |
A global metagenomic map of urban microbiomes and antimicrobial resistance D Danko, D Bezdan, EE Afshin, S Ahsanuddin, C Bhattacharya, DJ Butler, ... Cell 184 (13), 3376-3393. e17, 2021 | 218 | 2021 |
Identification of active transcriptional regulatory elements from GRO-seq data CG Danko, SL Hyland, LJ Core, AL Martins, CT Waters, HW Lee, ... Nature methods 12 (5), 433-438, 2015 | 205 | 2015 |
Making the most of text semantics to improve biomedical vision–language processing B Boecking, N Usuyama, S Bannur, DC Castro, A Schwaighofer, S Hyland, ... European conference on computer vision, 1-21, 2022 | 143 | 2022 |
Neural document embeddings for intensive care patient mortality prediction P Grnarova, F Schmidt, SL Hyland, C Eickhoff arXiv preprint arXiv:1612.00467, 2016 | 64 | 2016 |
Learning to exploit temporal structure for biomedical vision-language processing S Bannur, S Hyland, Q Liu, F Perez-Garcia, M Ilse, DC Castro, B Boecking, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 59 | 2023 |
Improving clinical predictions through unsupervised time series representation learning X Lyu, M Hueser, SL Hyland, G Zerveas, G Raetsch arXiv preprint arXiv:1812.00490, 2018 | 59 | 2018 |
Learning Unitary Operators with Help From u (n) SL Hyland, G Rätsch AAAI 2017, 2016 | 52 | 2016 |
Leveraging electronic health records for data science: common pitfalls and how to avoid them CM Sauer, LC Chen, SL Hyland, A Girbes, P Elbers, LA Celi The Lancet Digital Health 4 (12), e893-e898, 2022 | 50 | 2022 |
Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit E Rocheteau, P Liò, S Hyland Proceedings of the conference on health, inference, and learning, 58-68, 2021 | 50 | 2021 |
Real-valued (medical) time series generation with recurrent conditional GANs (2017) C Esteban, SL Hyland, G Rätsch arXiv preprint arXiv:1706.02633, 2019 | 41 | 2019 |
HiRID, a high time-resolution ICU dataset (version 1.1. 1) M Faltys, M Zimmermann, X Lyu, M Hüser, S Hyland, G Rätsch, T Merz Physio. Net 10, 2021 | 33 | 2021 |
Missing data was handled inconsistently in UK prediction models: a review of method used A Tsvetanova, M Sperrin, N Peek, I Buchan, S Hyland, GP Martin Journal of Clinical Epidemiology 140, 149-158, 2021 | 29 | 2021 |
Predicting the impact of treatments over time with uncertainty aware neural differential equations. E De Brouwer, J Gonzalez, S Hyland International Conference on Artificial Intelligence and Statistics, 4705-4722, 2022 | 20 | 2022 |
Machine learning for health (ML4H) 2020: Advancing healthcare for all SK Sarkar, S Roy, E Alsentzer, MBA McDermott, F Falck, I Bica, G Adams, ... Machine Learning for Health, 1-11, 2020 | 17 | 2020 |
MAIRA-1: A specialised large multimodal model for radiology report generation SL Hyland, S Bannur, K Bouzid, DC Castro, M Ranjit, A Schwaighofer, ... arXiv preprint arXiv:2311.13668, 2023 | 16 | 2023 |
Exploring the Boundaries of GPT-4 in Radiology Q Liu, S Hyland, S Bannur, K Bouzid, DC Castro, MT Wetscherek, R Tinn, ... arXiv preprint arXiv:2310.14573, 2023 | 16 | 2023 |
Intraoperative prediction of postanaesthesia care unit hypotension K Palla, SL Hyland, K Posner, P Ghosh, B Nair, M Bristow, Y Paleva, ... British Journal of Anaesthesia 128 (4), 623-635, 2022 | 13 | 2022 |
Machine learning for early prediction of circulatory failure in the intensive care unit SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ... arXiv preprint arXiv:1904.07990, 2019 | 12 | 2019 |