关注
Guy Y. Cornejo Maceda
Guy Y. Cornejo Maceda
Postdoctoral fellow, UC3M
在 ing.uc3m.es 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Stabilization of the fluidic pinball with gradient-enriched machine learning control
GYC Maceda, Y Li, F Lusseyran, M Morzyński, BR Noack
Journal of Fluid Mechanics 917, A42, 2021
572021
Machine-learning flow control with few sensor feedback and measurement noise
R Castellanos, GY Cornejo Maceda, I de la Fuente, BR Noack, A Ianiro, ...
Physics of Fluids 34 (4), 047118, 2022
302022
Bayesian optimization for active flow control
AB Blanchard, GY Cornejo Maceda, D Fan, Y Li, Y Zhou, BR Noack, ...
Acta Mechanica Sinica 37 (12), 1786-1798, 2021
252021
Sensitivity-aided active control of flow past twin cylinders
L Zhou, H Li, KT Tim, X He, GYC Maceda, H Zhang
International Journal of Mechanical Sciences 242, 108013, 2023
162023
Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control
GYC Maceda, E Varon, F Lusseyran, BR Noack
Journal of Fluid Mechanics 955, A20, 2023
152023
Cluster-based control for net drag reduction of the fluidic pinball
X Wang, N Deng, GY Cornejo Maceda, BR Noack
Physics of Fluids 35 (2), 2023
112023
Artificial intelligence control applied to drag reduction of the fluidic pinball
GY Cornejo Maceda, BR Noack, F Lusseyran, N Deng, L Pastur, ...
PAMM 19 (1), e201900268, 2019
102019
Topologically assisted optimization for rotor design
T Wang, Y Yang, X Chen, P Li, A Iollo, GY Cornejo Maceda, BR Noack
Physics of Fluids 35 (5), 2023
92023
Aerodynamic optimization of a generic light truck under unsteady conditions using gradient-enriched machine learning control
R Semaan, P Oswald, GY Cornejo Maceda, BR Noack
Experiments in Fluids 64 (3), 59, 2023
72023
Gradient-enriched machine learning control exemplified for shear flows in simulations and experiments
GY Cornejo Maceda
Université Paris-Saclay, 2021
62021
xMLC--A Toolkit for Machine Learning Control
GYC Maceda, F Lusseyran, BR Noack
arXiv preprint arXiv:2208.13172, 2022
52022
Real-time feedback stall control of an airfoil at large Reynolds numbers using linear genetic programming
PY Passaggia, A Quansah, N Mazellier, GYC Maceda, A Kourta
Physics of Fluids 34 (4), 045108, 2022
52022
Towards human-interpretable, automated learning of feedback control for the mixing layer
H Li, GYC Maceda, Y Li, J Tan, M Morzyński, BR Noack
arXiv preprint arXiv:2008.12924, 2020
42020
xMLC--A Toolkit for Machine Learning Control
GY Cornejo Maceda, F Lusseyran, BR Noack
arXiv e-prints, arXiv: 2208.13172, 2022
32022
Taming the fluidic pinball with artificial intelligence control
GYC Maceda, BR Noack, F Lusseyran, M Morzynski, L Pastur, N Deng
European Fluid Mechanics Conference, 2018
32018
XPDT: A Toolkit for Persistent Data Topology
T Wang, GYC Maceda, BR Noack
Technische Universität Braunschweig, 2023
22023
Gradient-enriched machine learning control exemplified for shear flows in simulations and experiments
GYC Maceda
Université Paris-Saclay, 2021
22021
Turbulence Control: From Model-Based to Machine Learned
N Deng, GY Cornejo Maceda, BR Noack
Fluids Under Control, 259-301, 2023
12023
Evolutionary Machine Learning in Control
GY Cornejo Maceda, BR Noack
Handbook of Evolutionary Machine Learning, 629-656, 2023
12023
Machine Learning flow control in the few sensors limit
R Castellanos, I de La Fuente, G Cornejo Maceda, B Noack, A Ianiro, ...
APS Division of Fluid Dynamics Meeting Abstracts, H23. 008, 2021
12021
系统目前无法执行此操作,请稍后再试。
文章 1–20