关注
Zhengyu Ma
Zhengyu Ma
Pengcheng Laboratory
在 wustl.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Cortical circuit dynamics are homeostatically tuned to criticality in vivo
Z Ma, GG Turrigiano, R Wessel, KB Hengen
Neuron 104 (4), 655-664. e4, 2019
1892019
CuInSe 2 ultrathin nanoplatelets: novel self-sacrificial template-directed synthesis and application for flexible photodetectors
W Bi, M Zhou, Z Ma, H Zhang, J Yu, Y Xie
Chemical communications 48 (73), 9162-9164, 2012
752012
Neocortical activity is stimulus-and scale-invariant
Y Karimipanah, Z Ma, JK Miller, R Yuste, R Wessel
PloS one 12 (5), e0177396, 2017
352017
Spikingformer: Spike-driven residual learning for transformer-based spiking neural network
C Zhou, L Yu, Z Zhou, Z Ma, H Zhang, H Zhou, Y Tian
arXiv preprint arXiv:2304.11954, 2023
282023
State transition of dendritic spines improves learning of sparse spiking neural networks
Y Chen, Z Yu, W Fang, Z Ma, T Huang, Y Tian
International Conference on Machine Learning, 3701-3715, 2022
272022
Stability of motor cortex network states during learning-associated neural reorganizations
Z Ma, H Liu, T Komiyama, R Wessel
Journal of Neurophysiology 124 (5), 1327-1342, 2020
182020
Neuron-based spiking transmission and reasoning network for robust image-text retrieval
W Li, Z Ma, LJ Deng, X Fan, Y Tian
IEEE Transactions on Circuits and Systems for Video Technology, 2022
152022
Parallel spiking neurons with high efficiency and ability to learn long-term dependencies
W Fang, Z Yu, Z Zhou, D Chen, Y Chen, Z Ma, T Masquelier, Y Tian
Advances in Neural Information Processing Systems 36, 2024
13*2024
A unified framework for soft threshold pruning
Y Chen, Z Ma, W Fang, X Zheng, Z Yu, Y Tian
arXiv preprint arXiv:2302.13019, 2023
132023
Criticality predicts maximum irregularity in recurrent networks of excitatory nodes
Y Karimipanah, Z Ma, R Wessel
PLoS One 12 (8), e0182501, 2017
10*2017
Deep spiking neural networks with high representation similarity model visual pathways of macaque and mouse
L Huang, Z Ma, L Yu, H Zhou, Y Tian
Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 31-39, 2023
62023
Enhancing the performance of transformer-based spiking neural networks by improved downsampling with precise gradient backpropagation
C Zhou, H Zhang, Z Zhou, L Yu, Z Ma, H Zhou, X Fan, Y Tian
arXiv preprint arXiv:2305.05954, 2023
62023
Auto-Spikformer: Spikformer Architecture Search
K Che, Z Zhou, Z Ma, W Fang, Y Chen, S Shen, L Yuan, Y Tian
arXiv preprint arXiv:2306.00807, 2023
52023
Motion-Decoupled Spiking Transformer for Audio-Visual Zero-Shot Learning
W Li, XL Zhao, Z Ma, X Wang, X Fan, Y Tian
Proceedings of the 31st ACM International Conference on Multimedia, 3994-4002, 2023
32023
Reservoir Computing Transformer for Image-Text Retrieval
W Li, Z Ma, LJ Deng, P Wang, J Shi, X Fan
Proceedings of the 31st ACM International Conference on Multimedia, 5605-5613, 2023
22023
Predicting the temporal-dynamic trajectories of cortical neuronal responses in non-human primates based on deep spiking neural network
J Zhang, L Huang, Z Ma, H Zhou
Cognitive Neurodynamics, 1-12, 2023
22023
Modulation of neuronal activity and saccades at theta rhythm during visual search in non-human primates
J Xie, T Yan, J Zhang, Z Ma, H Zhou
Neuroscience Bulletin 38 (10), 1183-1198, 2022
22022
Visual attention in the fovea and the periphery during visual search
J Zhang, X Zhu, S Wang, Z Ma, H Esteky, Y Tian, R Desimone, H Zhou
bioRxiv, 2021.11. 22.469359, 2021
22021
QKFormer: Hierarchical Spiking Transformer using QK Attention
C Zhou, H Zhang, Z Zhou, L Yu, L Huang, X Fan, L Yuan, Z Ma, H Zhou, ...
arXiv preprint arXiv:2403.16552, 2024
12024
SGLFormer: Spiking Global-Local-Fusion Transformer with High Performance
H Zhang, C Zhou, L Yu, L Huang, Z Ma, X Fan, H Zhou, Y Tian
Frontiers in Neuroscience 18, 1371290, 2024
12024
系统目前无法执行此操作,请稍后再试。
文章 1–20