VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning A Srivastava, L Valkov, C Russell, M Gutmann, C Sutton 31st Conference on Neural Information Processing Systems (NIPS 2017), Long …, 2017 | 784 | 2017 |
Autoencoding Variational Inference for Topic Models A Srivastava, C Sutton International Conference on Learning Representations (ICLR), 2017 | 639 | 2017 |
Fast and scalable Bayesian deep learning by weight-perturbation in Adam ME Khan, D Nielsen, V Tangkaratt, W Lin, Y Gal, A Srivastava International Conference on Machine Learning, 2018, 2018 | 292 | 2018 |
Equivariant contrastive learning R Dangovski, L Jing, C Loh, S Han, A Srivastava, B Cheung, P Agrawal, ... arXiv preprint arXiv:2111.00899, 2021 | 109 | 2021 |
Houdini: Lifelong learning as program synthesis L Valkov, D Chaudhari, A Srivastava, C Sutton, S Chaudhuri Advances in neural information processing systems 31, 2018 | 90 | 2018 |
Identifiability guarantees for causal disentanglement from soft interventions J Zhang, K Greenewald, C Squires, A Srivastava, K Shanmugam, C Uhler Advances in Neural Information Processing Systems 36, 2024 | 29 | 2024 |
A bayesian-symbolic approach to reasoning and learning in intuitive physics K Xu, A Srivastava, D Gutfreund, F Sosa, T Ullman, J Tenenbaum, ... Advances in neural information processing systems 34, 2478-2490, 2021 | 22 | 2021 |
Targeted neural dynamical modeling C Hurwitz, A Srivastava, K Xu, J Jude, M Perich, L Miller, M Hennig Advances in Neural Information Processing Systems 34, 29379-29392, 2021 | 22 | 2021 |
Improving negative-prompt inversion via proximal guidance L Han, S Wen, Q Chen, Z Zhang, K Song, M Ren, R Gao, Y Chen, D Liu, ... arXiv preprint arXiv:2306.05414 1, 2023 | 21 | 2023 |
Neural variational inference for topic models A Srivastava, C Sutton ArXiv Preprint 1 (1), 1-12, 2016 | 19 | 2016 |
Scalable Spike Source Localization in Extracellular Recordings using Amortized Variational Inference CL Hurwitz, K Xu, A Srivastava, AP Buccino, M Hennig NeurIPS, 2019, 2019 | 18 | 2019 |
Variational russian roulette for deep bayesian nonparametrics K Xu, A Srivastava, C Sutton International Conference on Machine Learning, 6963-6972, 2019 | 18 | 2019 |
Compositional foundation models for hierarchical planning A Ajay, S Han, Y Du, S Li, A Gupta, T Jaakkola, J Tenenbaum, L Kaelbling, ... Advances in Neural Information Processing Systems 36, 2024 | 15 | 2024 |
Beyond statistical similarity: Rethinking metrics for deep generative models in engineering design L Regenwetter, A Srivastava, D Gutfreund, F Ahmed Computer-Aided Design 165, 103609, 2023 | 15 | 2023 |
Links: A dataset of a hundred million planar linkage mechanisms for data-driven kinematic design A Heyrani Nobari, A Srivastava, D Gutfreund, F Ahmed International Design Engineering Technical Conferences and Computers and …, 2022 | 13 | 2022 |
Clustering with a reject option: Interactive clustering as bayesian prior elicitation A Srivastava, J Zou, C Sutton KDD 2016 Workshop on Interactive Data Exploration and Analytics (IDEA’16 …, 2016 | 13 | 2016 |
Generative Ratio Matching Networks A Srivastava, MU Gutmann, K Xu, C Sutton International Conference on Learning Representations, 2020 | 12* | 2020 |
Aligning optimization trajectories with diffusion models for constrained design generation G Giannone, A Srivastava, O Winther, F Ahmed Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
Estimating the density ratio between distributions with high discrepancy using multinomial logistic regression A Srivastava, S Han, K Xu, B Rhodes, MU Gutmann arXiv preprint arXiv:2305.00869, 2023 | 10 | 2023 |
Variational inference in pachinko allocation machines A Srivastava, C Sutton arXiv preprint arXiv:1804.07944, 2018 | 8 | 2018 |