Detail-revealing deep video super-resolution X Tao, H Gao, R Liao, J Wang, J Jia Proceedings of the IEEE international conference on computer vision, 4472-4480, 2017 | 594 | 2017 |
3d graph neural networks for rgbd semantic segmentation X Qi, R Liao, J Jia, S Fidler, R Urtasun Proceedings of the IEEE international conference on computer vision, 5199-5208, 2017 | 553 | 2017 |
Learning lane graph representations for motion forecasting M Liang, B Yang, R Hu, Y Chen, R Liao, S Feng, R Urtasun Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 543 | 2020 |
Upsnet: A unified panoptic segmentation network Y Xiong, R Liao, H Zhao, R Hu, M Bai, E Yumer, R Urtasun Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 495 | 2019 |
Geonet: Geometric neural network for joint depth and surface normal estimation X Qi, R Liao, Z Liu, R Urtasun, J Jia Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018 | 399 | 2018 |
Efficient graph generation with graph recurrent attention networks R Liao, Y Li, Y Song, S Wang, C Nash, WL Hamilton, D Duvenaud, ... Advances in Neural Information Processing Systems 32, 4255--4265, 2019 | 347 | 2019 |
Video super-resolution via deep draft-ensemble learning R Liao, X Tao, R Li, Z Ma, J Jia Proceedings of the IEEE international conference on computer vision, 531-539, 2015 | 305 | 2015 |
Nervenet: Learning structured policy with graph neural networks T Wang, R Liao, J Ba, S Fidler International Conference on Learning Representations, 2018 | 280 | 2018 |
Lanczosnet: Multi-scale deep graph convolutional networks R Liao, Z Zhao, R Urtasun, RS Zemel International Conference on Learning Representations, 2019 | 279 | 2019 |
Deep edge-aware filters L Xu, J Ren, Q Yan, R Liao, J Jia International conference on machine learning, 1669-1678, 2015 | 253 | 2015 |
Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data S Casas, C Gulino, R Liao, R Urtasun 2020 IEEE International Conference on Robotics and Automation (ICRA), 9491-9497, 2020 | 222* | 2020 |
Learning to generate images with perceptual similarity metrics J Snell, K Ridgeway, R Liao, B Roads, MC Mozer, RS Zemel IEEE International Conference on Image Processing, 2017 | 214 | 2017 |
Incremental few-shot learning with attention attractor networks M Ren, R Liao, E Fetaya, RS Zemel Advances in Neural Information Processing Systems 32, 5275--5285, 2019 | 202 | 2019 |
Learning deep structured active contours end-to-end D Marcos, D Tuia, B Kellenberger, L Zhang, M Bai, R Liao, R Urtasun Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 185 | 2018 |
Handling motion blur in multi-frame super-resolution Z Ma, R Liao, X Tao, L Xu, J Jia, E Wu Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 166 | 2015 |
Situation recognition with graph neural networks R Li, M Tapaswi, R Liao, J Jia, R Urtasun, S Fidler Proceedings of the IEEE international conference on computer vision, 4173-4182, 2017 | 164 | 2017 |
Lanercnn: Distributed representations for graph-centric motion forecasting W Zeng, M Liang, R Liao, R Urtasun 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021 | 160 | 2021 |
Implicit latent variable model for scene-consistent motion forecasting S Casas, C Gulino, S Suo, K Luo, R Liao, R Urtasun Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 160 | 2020 |
Learning Important Spatial Pooling Regions for Scene Classification D Lin, C Lu, R Liao, J Jia IEEE Computer Vision and Pattern Recognition, 2014 | 146 | 2014 |
Understanding short-horizon bias in stochastic meta-optimization Y Wu, M Ren, R Liao, R Grosse International Conference on Learning Representations, 2018 | 138 | 2018 |