Distilling Task-Specific Knowledge from BERT into Simple Neural Networks R Tang*, Y Lu*, L Liu*, L Mou, O Vechtomova, J Lin arXiv preprint arXiv:1903.12136, 2019 | 453 | 2019 |
DocBERT: BERT for Document Classification A Adhikari arXiv preprint arXiv:1904.08398, 2019 | 446 | 2019 |
DeeBERT: Dynamic early exiting for accelerating BERT inference J Xin, R Tang, J Lee, Y Yu, J Lin arXiv preprint arXiv:2004.12993, 2020 | 330 | 2020 |
Deep Residual Learning for Small-Footprint Keyword Spotting R Tang, J Lin 2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018 | 268 | 2018 |
What would elsa do? freezing layers during transformer fine-tuning J Lee, R Tang, J Lin arXiv preprint arXiv:1911.03090, 2019 | 131 | 2019 |
Rethinking Complex Neural Network Architectures for Document Classification A Adhikari*, A Ram*, R Tang, J Lin Proceedings of the 2019 Conference of the North American Chapter of the …, 2019 | 126 | 2019 |
BERxiT: Early exiting for BERT with better fine-tuning and extension to regression J Xin, R Tang, Y Yu, J Lin Proceedings of the 16th conference of the European chapter of the …, 2021 | 108 | 2021 |
What the DAAM: Interpreting Stable Diffusion Using Cross Attention R Tang*, L Liu*, A Pandey, Z Jiang, G Yang, K Kumar, P Stenetorp, J Lin, ... arXiv preprint arXiv:2210.04885, 2022 | 101 | 2022 |
Rapidly Bootstrapping a Question Answering Dataset for COVID-19 R Tang, R Nogueira, E Zhang, N Gupta, P Cam, K Cho, J Lin arXiv preprint arXiv:2004.11339, 2020 | 72 | 2020 |
Covidex: neural ranking models and keyword search infrastructure for the COVID-19 open research dataset E Zhang, N Gupta, R Tang, X Han, R Pradeep, K Lu, Y Zhang, R Nogueira, ... arXiv preprint arXiv:2007.07846, 2020 | 69 | 2020 |
“Low-resource” text classification: A parameter-free classification method with compressors Z Jiang, M Yang, M Tsirlin, R Tang, Y Dai, J Lin Findings of the Association for Computational Linguistics: ACL 2023, 6810-6828, 2023 | 60 | 2023 |
An Experimental Analysis of the Power Consumption of Convolutional Neural Networks for Keyword Spotting R Tang, W Wang, Z Tu, J Lin 2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018 | 57 | 2018 |
The art of abstention: Selective prediction and error regularization for natural language processing J Xin, R Tang, Y Yu, J Lin Proceedings of the 59th Annual Meeting of the Association for Computational …, 2021 | 56 | 2021 |
Honk: A PyTorch Reimplementation of Convolutional Neural Networks for Keyword Spotting R Tang, J Lin arXiv preprint arXiv:1710.06554, 2017 | 45 | 2017 |
Flops as a direct optimization objective for learning sparse neural networks R Tang, A Adhikari, J Lin arXiv preprint arXiv:1811.03060, 2018 | 36 | 2018 |
Exploring the limits of simple learners in knowledge distillation for document classification with DocBERT A Adhikari, A Ram, R Tang, WL Hamilton, J Lin Proceedings of the 5th Workshop on Representation Learning for NLP, 72-77, 2020 | 33 | 2020 |
Natural Language Generation for Effective Knowledge Distillation R Tang, Y Lu, J Lin Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource …, 2019 | 33 | 2019 |
Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models R Tang*, X Zhang*, X Ma, J Lin, F Ture arXiv preprint arXiv:2310.07712, 2023 | 27 | 2023 |
Howl: A Deployed, Open-Source Wake Word Detection System R Tang*, J Lee*, A Razi, J Cambre, I Bicking, J Kaye, J Lin arXiv preprint arXiv:2008.09606, 2020 | 17 | 2020 |
Incorporating Contextual and Syntactic Structures Improves Semantic Similarity Modeling L Liu, W Yang, J Rao, R Tang, J Lin Proceedings of the 2019 Conference on Empirical Methods in Natural Language …, 2019 | 14 | 2019 |