What makes a neural code convex? C Curto, E Gross, J Jeffries, K Morrison, M Omar, Z Rosen, A Shiu, ... SIAM Journal on Applied Algebra and Geometry 1 (1), 222-238, 2017 | 85 | 2017 |
Cyclic orbit codes and stabilizer subfields H Gluesing-Luerssen, K Morrison, C Troha Advances in Mathematics of Communications 9 (2), 2015 | 71 | 2015 |
Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes K Morrison IEEE Transactions on Information Theory 60 (11), 7035-7046, 2014 | 71 | 2014 |
Combinatorial neural codes from a mathematical coding theory perspective C Curto, V Itskov, K Morrison, Z Roth, JL Walker Neural computation 25 (7), 1891-1925, 2013 | 42 | 2013 |
Fixed points of competitive threshold-linear networks C Curto, J Geneson, K Morrison Neural computation 31 (1), 94-155, 2019 | 39 | 2019 |
Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience C Curto, K Morrison Current opinion in neurobiology 58, 11-20, 2019 | 36 | 2019 |
Diversity of emergent dynamics in competitive threshold-linear networks K Morrison, A Degeratu, V Itskov, C Curto arXiv preprint arXiv:1605.04463, 2016 | 34 | 2016 |
Pattern completion in symmetric threshold-linear networks C Curto, K Morrison Neural computation 28 (12), 2825-2852, 2016 | 30 | 2016 |
Analysis of connections between pseudocodewords N Axvig, D Dreher, K Morrison, E Psota, LC Pérez, JL Walker IEEE transactions on information theory 55 (9), 4099-4107, 2009 | 25 | 2009 |
Sequential attractors in combinatorial threshold-linear networks C Parmelee, JL Alvarez, C Curto, K Morrison SIAM Journal on Applied Dynamical Systems 21 (2), 1597-1630, 2022 | 21 | 2022 |
Algebraic signatures of convex and non-convex codes C Curto, E Gross, J Jeffries, K Morrison, Z Rosen, A Shiu, N Youngs Journal of pure and applied algebra 223 (9), 3919-3940, 2019 | 21 | 2019 |
Predicting neural network dynamics via graphical analysis K Morrison, C Curto Algebraic and Combinatorial Computational Biology, 241-277, 2019 | 18 | 2019 |
Core motifs predict dynamic attractors in combinatorial threshold-linear networks C Parmelee, S Moore, K Morrison, C Curto PloS one 17 (3), e0264456, 2022 | 16 | 2022 |
Average min-sum decoding of LDPC codes N Axvig, D Dreher, K Morrison, E Psota, LC Pérez, JL Walker 2008 5th International Symposium on Turbo Codes and Related Topics, 356-361, 2008 | 13 | 2008 |
Robust motifs of threshold-linear networks C Curto, C Langdon, K Morrison arXiv preprint arXiv:1902.10270, 2019 | 12 | 2019 |
Stable fixed points of combinatorial threshold-linear networks C Curto, J Geneson, K Morrison Advances in Applied Mathematics 154, 102652, 2024 | 10* | 2024 |
A universal theory of decoding and pseudocodewords N Axvig, D Dreher, K Morrison, ET Psota, LC Pérez, JL Walker | 8 | 2008 |
Nerve theorems for fixed points of neural networks DE Santander, S Ebli, A Patania, N Sanderson, F Burtscher, K Morrison, ... Research in Computational Topology 2, 129-165, 2022 | 7 | 2022 |
An enumeration of the equivalence classes of self-dual matrix codes K Morrison Advances in Mathematics of Communications 9 (4), 2015 | 7 | 2015 |
Combinatorial Geometry of Threshold-Linear Networks C Curto, C Langdon, K Morrison arXiv preprint arXiv:2008.01032, 2020 | 6 | 2020 |