关注
Iain Murray
Iain Murray
School of Informatics, University of Edinburgh and Amazon
在 ed.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Masked autoregressive flow for density estimation
G Papamakarios, T Pavlakou, I Murray
Advances in neural information processing systems 30, 2017
13712017
Evaluation methods for topic models
HM Wallach, I Murray, R Salakhutdinov, D Mimno
Proceedings of the 26th annual international conference on machine learning …, 2009
12502009
MADE: Masked Autoencoder for Distribution Estimation
M Germain, K Gregor, I Murray, H Larochelle
Proceedings of the 32nd International Conference on Machine Learning, JMLR W …, 2015
9142015
The neural autoregressive distribution estimator
H Larochelle, I Murray
Proceedings of the fourteenth international conference on artificial …, 2011
6932011
Neural Spline Flows
C Durkan, A Bekasov, I Murray, G Papamakarios
arXiv preprint arXiv:1906.04032, 2019
6892019
On the quantitative analysis of deep belief networks
R Salakhutdinov, I Murray
Proceedings of the 25th international conference on Machine learning, 872-879, 2008
5832008
MCMC for doubly-intractable distributions
I Murray, Z Ghahramani, DJC MacKay
Proceedings of the 22nd Annual Conference on Uncertainty in Artificial …, 2006
541*2006
Elliptical slice sampling
I Murray, RP Adams, DJC MacKay
Journal of Machine Learning Research W&CP 9, 541-548, 2010
5382010
Maximum likelihood training of score-based diffusion models
Y Song, C Durkan, I Murray, S Ermon
Advances in neural information processing systems 34, 1415-1428, 2021
4302021
Neural autoregressive distribution estimation
B Uria, MA Côté, K Gregor, I Murray, H Larochelle
Journal of Machine Learning Research 17 (205), 1-37, 2016
3792016
Fast ε-free inference of simulation models with bayesian conditional density estimation
G Papamakarios, I Murray
Advances in neural information processing systems 29, 2016
3662016
Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows
G Papamakarios, D Sterratt, I Murray
The 22nd international conference on artificial intelligence and statistics …, 2019
3122019
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities
RP Adams, I Murray, DJC MacKay
Proceedings of the 26th annual international conference on machine learning …, 2009
2782009
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
AC Stickland, I Murray
arXiv preprint arXiv:1902.02671, 2019
2772019
Slice sampling covariance hyperparameters of latent Gaussian models
I Murray, RP Adams
Advances in neural information processing systems 23, 2010
2702010
RNADE: The real-valued neural autoregressive density-estimator
B Uria, I Murray, H Larochelle
Advances in Neural Information Processing Systems 26, 2013
2662013
Multiplicative LSTM for sequence modelling
B Krause, L Lu, I Murray, S Renals
arXiv preprint arXiv:1609.07959, 2016
2432016
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
K Chalupka, CKI Williams, I Murray
Journal of Machine Learning Research 14, 333-350, 2013
2082013
A deep and tractable density estimator
B Uria, I Murray, H Larochelle
Proceedings of The 31st International Conference on Machine Learning, JMLR W …, 2014
1832014
Dynamic evaluation of neural sequence models
B Krause, E Kahembwe, I Murray, S Renals
International Conference on Machine Learning, 2766-2775, 2018
1422018
系统目前无法执行此操作,请稍后再试。
文章 1–20