受强制性开放获取政策约束的文章 - xizhan gao了解详情
无法在其他位置公开访问的文章:46 篇
Large margin distribution multi-class supervised novelty detection
F Zhu, W Zhang, X Chen, X Gao, N Ye
Expert Systems with Applications 224, 119937, 2023
强制性开放获取政策: 国家自然科学基金委员会
Joint metric learning-based class-specific representation for image set classification
X Gao, S Niu, D Wei, X Liu, T Wang, F Zhu, J Dong, Q Sun
IEEE Transactions on Neural Networks and Learning Systems, 2022
强制性开放获取政策: 国家自然科学基金委员会
A new predefined-time stability theorem and its application in the synchronization of memristive complex-valued BAM neural networks
A Liu, H Zhao, Q Wang, S Niu, X Gao, C Chen, L Li
Neural Networks 153, 152-163, 2022
强制性开放获取政策: 国家自然科学基金委员会
Sparse and collaborative representation based kernel pairwise linear regression for image set classification
X Gao, Q Sun, H Xu, J Gao
Expert Systems with Applications 140, 112886, 2020
强制性开放获取政策: 国家自然科学基金委员会
Multi-model fusion metric learning for image set classification
X Gao, Q Sun, H Xu, D Wei, J Gao
Knowledge-Based Systems 164, 253-264, 2019
强制性开放获取政策: 国家自然科学基金委员会
Prototype learning and collaborative representation using Grassmann manifolds for image set classification
D Wei, X Shen, Q Sun, X Gao, W Yan
Pattern Recognition 100, 107123, 2020
强制性开放获取政策: 国家自然科学基金委员会
Constraint-weighted support vector ordinal regression to resist constraint noises
F Zhu, X Chen, X Gao, W Ye, H Zhao, AV Vasilakos
Information Sciences 649, 119644, 2023
强制性开放获取政策: 国家自然科学基金委员会
Neighborhood preserving embedding on Grassmann manifold for image-set analysis
D Wei, X Shen, Q Sun, X Gao, Z Ren
Pattern Recognition 122, 108335, 2022
强制性开放获取政策: 国家自然科学基金委员会
MRCCA: A novel CCA based method and its application in feature extraction and fusion for matrix data
X Gao, Q Sun, J Yang
Applied Soft Computing 62, 45-56, 2018
强制性开放获取政策: 国家自然科学基金委员会
Two-directional two-dimensional kernel canonical correlation analysis
X Gao, S Niu, Q Sun
IEEE Signal Processing Letters 26 (11), 1578-1582, 2019
强制性开放获取政策: 国家自然科学基金委员会
Bag-of-features model for asd fmri classification using svm
MS Ahammed, S Niu, MR Ahmed, J Dong, X Gao, Y Chen
2021 Asia-Pacific Conference on Communications Technology and Computer …, 2021
强制性开放获取政策: 国家自然科学基金委员会
Discrete metric learning for fast image set classification
D Wei, X Shen, Q Sun, X Gao
IEEE Transactions on Image Processing 31, 6471-6486, 2022
强制性开放获取政策: 国家自然科学基金委员会
Exploiting sparse self-representation and particle swarm optimization for CNN compression
S Niu, K Gao, P Ma, X Gao, H Zhao, J Dong, Y Chen, D Shen
IEEE transactions on neural networks and learning systems 34 (12), 10266-10278, 2022
强制性开放获取政策: 国家自然科学基金委员会
Adaptive graph guided concept factorization on Grassmann manifold
D Wei, X Shen, Q Sun, X Gao, Z Ren
Information Sciences 576, 725-742, 2021
强制性开放获取政策: 国家自然科学基金委员会
A novel time series prediction method based on pooling compressed sensing echo state network and its application in stock market
Z Wang, H Zhao, M Zheng, S Niu, X Gao, L Li
Neural Networks 164, 216-227, 2023
强制性开放获取政策: 国家自然科学基金委员会
Deep low-rank graph convolutional subspace clustering for hyperspectral image
T Han, S Niu, X Gao, W Yu, N Cui, J Dong
IEEE Transactions on Geoscience and Remote Sensing 60, 1-13, 2022
强制性开放获取政策: 国家自然科学基金委员会
Multiple kernel dimensionality reduction based on collaborative representation for set oriented image classification
W Yan, H Sun, Q Sun, Z Zheng, X Gao, Q Zhang, Z Ren
Expert Systems with Applications 137, 380-391, 2019
强制性开放获取政策: 国家自然科学基金委员会
Locality-aware group sparse coding on Grassmann manifolds for image set classification
D Wei, X Shen, Q Sun, X Gao, W Yan
Neurocomputing 385, 197-210, 2020
强制性开放获取政策: 国家自然科学基金委员会
Self-training adversarial learning for cross-domain retinal OCT fluid segmentation
X Li, S Niu, X Gao, X Zhou, J Dong, H Zhao
Computers in Biology and Medicine 155, 106650, 2023
强制性开放获取政策: 国家自然科学基金委员会
Fast high-order sparse subspace clustering with cumulative MRF for hyperspectral images
L Wang, S Niu, X Gao, K Liu, F Lu, Q Diao, J Dong
IEEE Geoscience and Remote Sensing Letters 18 (1), 152-156, 2020
强制性开放获取政策: 国家自然科学基金委员会
出版信息和资助信息由计算机程序自动确定