Dilatational band formation in bone AA Poundarik, T Diab, GE Sroga, A Ural, AL Boskey, CM Gundberg, ... Proceedings of the National Academy of Sciences 109 (47), 19178-19183, 2012 | 268 | 2012 |
A direct role of collagen glycation in bone fracture AA Poundarik, PC Wu, Z Evis, GE Sroga, A Ural, M Rubin, D Vashishth Journal of the mechanical behavior of biomedical materials 52, 120-130, 2015 | 149 | 2015 |
Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear A Ural, G Heber, PA Wawrzynek, AR Ingraffea, DG Lewicki, JBC Neto Engineering Fracture Mechanics 72 (8), 1148-1170, 2005 | 148 | 2005 |
Cohesive finite element modeling of age-related toughness loss in human cortical bone A Ural, D Vashishth Journal of biomechanics 39 (16), 2974-2982, 2006 | 138 | 2006 |
A cohesive zone model for fatigue crack growth allowing for crack retardation A Ural, VR Krishnan, KD Papoulia International Journal of Solids and Structures 46 (11-12), 2453-2462, 2009 | 135 | 2009 |
Delamination buckling and propagation analysis of honeycomb panels using a cohesive element approach TS Han, A Ural, CS Chen, AT Zehnder, AR Ingraffea, SL Billington International Journal of Fracture 115, 101-123, 2002 | 101 | 2002 |
Multiscale modeling of bone fracture using cohesive finite elements A Ural, S Mischinski Engineering Fracture Mechanics 103, 141-152, 2013 | 88 | 2013 |
The effect of strain rate on fracture toughness of human cortical bone: a finite element study A Ural, P Zioupos, D Buchanan, D Vashishth Journal of the mechanical behavior of biomedical materials 4 (7), 1021-1032, 2011 | 77 | 2011 |
Fracture mechanics approach to facesheet delamination in honeycomb: measurement of energy release rate of the adhesive bond A Ural, AT Zehnder, AR Ingraffea Engineering Fracture Mechanics 70 (1), 93-103, 2003 | 76 | 2003 |
Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A -Based Cohesive Finite Element Study A Ural, D Vashishth | 75 | 2007 |
Finite element modeling of microcrack growth in cortical bone S Mischinski, A Ural | 66 | 2011 |
Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel L Zhang, L An, Y Wang, A Lee, Y Schuman, A Ural, AS Fleischer, G Feng Chemical Engineering Journal 373, 857-869, 2019 | 65 | 2019 |
Interactions between microstructural and geometrical adaptation in human cortical bone A Ural, D Vashishth Journal of Orthopaedic Research 24 (7), 1489-1498, 2006 | 65 | 2006 |
Hierarchical perspective of bone toughness–from molecules to fracture A Ural, D Vashishth International Materials Reviews 59 (5), 245-263, 2014 | 64 | 2014 |
Interaction of microstructure and microcrack growth in cortical bone: a finite element study S Mischinski, A Ural Computer methods in biomechanics and biomedical engineering 16 (1), 81-94, 2013 | 62 | 2013 |
Anisotropy of age-related toughness loss in human cortical bone: a finite element study A Ural, D Vashishth Journal of biomechanics 40 (7), 1606-1614, 2007 | 59 | 2007 |
Prediction of Colles’ fracture load in human radius using cohesive finite element modeling A Ural Journal of Biomechanics 42 (1), 22-28, 2009 | 51 | 2009 |
Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling A Demirtas, E Curran, A Ural Bone 91, 92-101, 2016 | 37 | 2016 |
Association between non-enzymatic glycation, resorption, and microdamage in human tibial cortices A Ural, C Janeiro, L Karim, T Diab, D Vashishth Osteoporosis International 26, 865-873, 2015 | 33 | 2015 |
Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior Y Wang, A Ural Journal of biomechanics 66, 70-77, 2018 | 31 | 2018 |