Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types G Wei, BJ Abraham, R Yagi, R Jothi, K Cui, S Sharma, L Narlikar, ... Immunity 35 (2), 299-311, 2011 | 357 | 2011 |
Genome-wide discovery of human heart enhancers L Narlikar, NJ Sakabe, AA Blanski, FE Arimura, JM Westlund, ... Genome research 20 (3), 381-392, 2010 | 153 | 2010 |
Identifying regulatory elements in eukaryotic genomes L Narlikar, I Ovcharenko Briefings in functional genomics & proteomics 8 (4), 215-230, 2009 | 150 | 2009 |
A nucleosome-guided map of transcription factor binding sites in yeast L Narlikar, R Gordân, AJ Hartemink PLoS computational biology 3 (11), e215, 2007 | 128 | 2007 |
Informative priors based on transcription factor structural class improve de novo motif discovery L Narlikar, R Gordân, U Ohler, AJ Hartemink Bioinformatics 22 (14), e384-e392, 2006 | 80 | 2006 |
ChIP-Seq data analysis: identification of Protein–DNA binding sites with SISSRs peak-finder L Narlikar, R Jothi Next Generation Microarray Bioinformatics: Methods and Protocols, 305-322, 2012 | 62 | 2012 |
Sequence features of DNA binding sites reveal structural class of associated transcription factor L Narlikar, AJ Hartemink Bioinformatics 22 (2), 157-163, 2006 | 56 | 2006 |
Finding regulatory DNA motifs using alignment-free evolutionary conservation information R Gordaˆn, L Narlikar, AJ Hartemink Nucleic Acids Research 38 (6), e90-e90, 2010 | 55 | 2010 |
Nucleosome Occupancy Information Improves de novo Motif Discovery L Narlikar, R Gordân, AJ Hartemink Research in Computational Molecular Biology: 11th Annual International …, 2007 | 49 | 2007 |
One size does not fit all: On how Markov model order dictates performance of genomic sequence analyses L Narlikar, N Mehta, S Galande, M Arjunwadkar Nucleic acids research 41 (3), 1416-1424, 2013 | 31 | 2013 |
A fast, alignment-free, conservation-based method for transcription factor binding site discovery R Gordân, L Narlikar, AJ Hartemink Annual International Conference on Research in Computational Molecular …, 2008 | 29 | 2008 |
MuMoD: a Bayesian approach to detect multiple modes of protein–DNA binding from genome-wide ChIP data L Narlikar Nucleic acids research 41 (1), 21-32, 2013 | 23 | 2013 |
Multiple novel promoter-architectures revealed by decoding the hidden heterogeneity within the genome L Narlikar Nucleic acids research 42 (20), 12388-12403, 2014 | 19 | 2014 |
CLARE: Cracking the LAnguage of Regulatory Elements L Taher, L Narlikar, I Ovcharenko Bioinformatics 28 (4), 581-583, 2012 | 16 | 2012 |
DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP S Mitra, A Biswas, L Narlikar PLoS Comput Biol 14 (4), 2018 | 13 | 2018 |
Identification and Computational Analysis of Gene Regulatory Elements L Taher, L Narlikar, I Ovcharenko Cold Spring Harbor Protocols 2015 (1), pdb. top083642, 2015 | 12 | 2015 |
Orc4 spatiotemporally stabilizes centromeric chromatin L Sreekumar, K Kumari, K Guin, A Bakshi, N Varshney, BC Thimmappa, ... Genome Research 31 (4), 607-621, 2021 | 9 | 2021 |
No Promoter Left Behind (NPLB): learn de novo promoter architectures from genome-wide transcription start sites S Mitra, L Narlikar Bioinformatics 32 (5), 779-781, 2016 | 9 | 2016 |
Machine learning prediction of non-attendance to postpartum glucose screening and subsequent risk of type 2 diabetes following gestational diabetes N Periyathambi, D Parkhi, Y Ghebremichael-Weldeselassie, V Patel, ... PloS one 17 (3), e0264648, 2022 | 7 | 2022 |
THiCweed: fast, sensitive detection of sequence features by clustering big datasets A Agrawal, SV Sambare, L Narlikar, R Siddharthan Nucleic Acids Research, 2017 | 6 | 2017 |