关注
Christian Lagemann
Christian Lagemann
Postdoctoral researcher at AI Institute in Dynamic Systems, University of Washington, Seattle
在 uw.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep recurrent optical flow learning for particle image velocimetry data
C Lagemann, K Lagemann, S Mukherjee, W Schröder
Nature Machine Intelligence 3 (7), 641-651, 2021
972021
Peregrine Falcon’s Dive: Pullout Maneuver and Flight Control Through Wing Morphing
O Selim, ER Gowree, C Lagemann, E Talboys, C Jagadeesh, C Brücker
AIAA Journal 59 (10), 3979-3987, 2021
342021
Analysis of transonic buffet using dynamic mode decomposition
A Feldhusen-Hoffmann, C Lagemann, S Loosen, P Meysonnat, M Klaas, ...
Experiments in Fluids 62 (4), 1-17, 2021
342021
Generalization of deep recurrent optical flow estimation for particle-image velocimetry data
C Lagemann, K Lagemann, S Mukherjee, W Schröder
Measurement Science and Technology 33 (9), 094003, 2022
302022
Deep learning of causal structures in high dimensions under data limitations
K Lagemann, C Lagemann, B Taschler, S Mukherjee
Nature Machine Intelligence 5 (11), 1306-1316, 2023
272023
Vortices enable the complex aerobatics of peregrine falcons
ER Gowree, C Jagadeesh, E Talboys, C Lagemann, C Brücker
Communications biology 1 (1), 27, 2018
232018
Deep artificial neural network architectures in PIV applications
C Lagemann, K Lagemann, W Schröder, M Klaas
13th International Symposium on Particle Image Velocimetry, 2019
142019
Unsupervised Recurrent All-Pairs Field Transforms for Particle Image Velocimetry
C Lagemann, M Klaas, W Schröder
14th International Symposium on Particle Image Velocimetry 1 (1), 2021
132021
Invariance-based Learning of Latent Dynamics
K Lagemann, C Lagemann, S Mukherjee
The Twelfth International Conference on Learning Representations, 2023
10*2023
Towards extending the aircraft flight envelope by mitigating transonic airfoil buffet
E Lagemann, SL Brunton, W Schröder, C Lagemann
Nature Communications 15 (1), 5020, 2024
9*2024
Impact of Reynolds number on the drag reduction mechanism of spanwise travelling surface waves
E Lagemann, M Albers, C Lagemann, W Schröder
Flow, Turbulence and Combustion 113 (1), 27-40, 2024
82024
Uncovering wall-shear stress dynamics from neural-network enhanced fluid flow measurements
E Lagemann, SL Brunton, C Lagemann
Proceedings of the Royal Society A 480 (2292), 20230798, 2024
72024
Challenges of deep unsupervised optical flow estimation for particle-image velocimetry data
C Lagemann, K Lagemann, S Mukherjee, W Schröder
Experiments in Fluids 65 (3), 30, 2024
72024
Analysis of PIV Images of Transonic Buffet Flow by Recurrent Deep Learning Based Optical Flow Prediction
C Lagemann, E Mäteling, M Klaas, W Schröder
20th International Symposium on Applications of Laser and Imaging Techniques …, 2022
72022
Experimental and numerical analysis of the aerodynamics of peregrine falcons during stoop flight
C Lagemann, ER Gowree, C Jagadeesh, E Talboys, C Brücker
Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2018
52018
Key aspects of unsupervised optical flow models in PIV applications
C Lagemann, W Schröder
15th international symposium on particle image velocimetry, 2023
42023
Instantaneous wall-shear stress distribution based on wall-normal PIV measurements using deep optical flow
E Lagemann, W Schröder, C Lagemann
15th international symposium on particle image velocimetry, 2023
42023
Dataset: Deep Recurrent Optical Flow Learning for Particle Image Velocimetry Data
C Lagemann, K Lagemann, S Mukherjee, W Schröder
Statistics and Machine Learning, 2021
32021
Deep Recurrent Neural Networks for Optical Flow Learning in Particle-image Velocimetry
C Lagemann
Verlag Dr. Hut, 2022
12022
Mitigating transonic buffet with porous trailing edges
E Lagemann, S Brunton, W Schröder, C Lagemann
Bulletin of the American Physical Society, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20