Efficiently Sampling Functions from Gaussian Process Posteriors JT Wilson, V Borovitskiy, A Terenin, P Mostowsky, MP Deisenroth International Conference on Machine Learning, 10292-10302, 2020 | 154 | 2020 |
Matérn Gaussian Processes on Riemannian manifolds V Borovitskiy, A Terenin, P Mostowsky, MP Deisenroth Advances in Neural Information Processing Systems, 2020 | 118 | 2020 |
Matérn Gaussian Processes on Graphs V Borovitskiy, I Azangulov, A Terenin, P Mostowsky, MP Deisenroth, ... Artificial Intelligence and Statistics, 2021 | 87 | 2021 |
Variational Integrator Networks for Physically Structured Embeddings S Saemundsson, A Terenin, K Hofmann, MP Deisenroth Artificial Intelligence and Statistics, 3078-3087, 2020 | 73 | 2020 |
Asynchronous Gibbs sampling A Terenin, D Simpson, D Draper Artificial Intelligence and Statistics, 144-154, 2020 | 67* | 2020 |
Pathwise Conditioning of Gaussian Processes JT Wilson, V Borovitskiy, A Terenin, P Mostowsky, MP Deisenroth Journal of Machine Learning Research, 2021 | 51 | 2021 |
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model A Terenin, S Dong, D Draper Statistics and computing 29, 301-310, 2019 | 51* | 2019 |
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels N Jaquier, V Borovitskiy, A Smolensky, A Terenin, T Asfour, L Rozo Conference on Robot Learning, 2021 | 32 | 2021 |
Vector-valued Gaussian processes on Riemannian manifolds via gauge independent projected kernels M Hutchinson, A Terenin, V Borovitskiy, S Takao, Y Teh, M Deisenroth Advances in Neural Information Processing Systems 34, 17160-17169, 2021 | 25 | 2021 |
Learning Contact Dynamics using Physically Structured Neural Networks A Hochlehnert, A Terenin, S Sæmundsson, MP Deisenroth Artificial Intelligence and Statistics, 2021 | 24 | 2021 |
Pólya Urn Latent Dirichlet Allocation: a doubly sparse massively parallel sampler A Terenin, M Magnusson, L Jonsson, D Draper IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (7), 1709-1719, 2019 | 21 | 2019 |
Stationary kernels and Gaussian processes on Lie groups and their homogeneous spaces I: the compact case I Azangulov, A Smolensky, A Terenin, V Borovitskiy arXiv preprint arXiv:2208.14960, 2022 | 17 | 2022 |
Aligning Time Series on Incomparable Spaces S Cohen, G Luise, A Terenin, B Amos, MP Deisenroth Artificial Intelligence and Statistics, 2021 | 17 | 2021 |
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces I Azangulov, A Smolensky, A Terenin, V Borovitskiy arXiv preprint arXiv:2301.13088, 2023 | 12 | 2023 |
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent JA Lin, J Antorán, S Padhy, D Janz, JM Hernández-Lobato, A Terenin Advances in Neural Information Processing Systems, 2023 | 11 | 2023 |
Sliced Multi-Marginal Optimal Transport S Cohen, A Terenin, Y Pitcan, B Amos, MP Deisenroth, KSS Kumar NeurIPS Workshop on Optimal Transport and Machine Learning, 2021 | 11 | 2021 |
A noninformative prior on a space of distribution functions A Terenin, D Draper Entropy 19 (8), 391, 2017 | 11 | 2017 |
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds P Rosa, V Borovitskiy, A Terenin, J Rousseau Advances in Neural Information Processing Systems, 2023 | 5 | 2023 |
The Cambridge Law Corpus: A Dataset for Legal AI Research A Östling, H Sargeant, H Xie, L Bull, A Terenin, L Jonsson, M Magnusson, ... Advances in Neural Information Processing Systems, 2024 | 4* | 2024 |
A Piecewise Deterministic Markov Process via swaps in hyperspherical coordinates A Terenin, D Thorngren Workshop on Bayesian Inference and Maximum Entropy Methods in Science and …, 2018 | 4 | 2018 |