关注
Karolina Kropielnicka
Karolina Kropielnicka
在 mat.ug.edu.pl 的电子邮件经过验证
标题
引用次数
引用次数
年份
Effective approximation for the semiclassical Schrödinger equation
P Bader, A Iserles, K Kropielnicka, P Singh
Foundations of Computational Mathematics 14, 689-720, 2014
692014
Differential difference inequalities related to hyperbolic functional differential systems and applications
Z Kamont, K Kropielnicka
MATHEMATICAL INEQUALITIES AND APPLICATIONS 8 (4), 655, 2005
402005
Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential
P Bader, A Iserles, K Kropielnicka, P Singh
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2016
362016
Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential
A Iserles, K Kropielnicka, P Singh
SIAM Journal on Numerical Analysis 56 (3), 1547-1569, 2018
192018
Compact schemes for laser–matter interaction in Schrödinger equation based on effective splittings of Magnus expansion
A Iserles, K Kropielnicka, P Singh
Computer Physics Communications 234, 195-201, 2019
172019
Convergence of implicit difference methods for parabolic functional differential equations
K Kropielnicka
Int. Journal of Mat. Analysis 1 (6), 257-277, 2007
172007
Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials
A Iserles, K Kropielnicka, P Singh
Journal of Computational Physics 376, 564-584, 2019
142019
Implicit difference methods for evolution functional differential equations
Z Kamont, K Kropielnicka
Numerical Analysis and Applications 4, 294-308, 2011
132011
The escalator boxcar train method for a system of age-structured equations in the space of measures
JA Carrillo, P Gwiazda, K Kropielnicka, AK Marciniak-Czochra
SIAM Journal on Numerical Analysis 57 (4), 1842-1874, 2019
112019
The escalator boxcar train method for a system of aged-structured equations
P Gwiazda, K Kropielnicka, A Marciniak-Czochra
arXiv preprint arXiv:1506.00016, 2015
112015
On the discretisation of the semiclassical Schrödinger equation with time-dependent potential
A Iserles, K Kropielnicka, P Singh
Cambridge Numerical Analysis Report NA2015/02. Cambridge, UK: Cambridge …, 2015
112015
Efficient computation of delay differential equations with highly oscillatory terms
M Condon, A Deano, A Iserles, K Kropielnicka
ESAIM: Mathematical Modelling and Numerical Analysis 46 (6), 1407-1420, 2012
112012
Asymptotic numerical solver for the linear Klein–Gordon equation with space-and time-dependent mass
M Condon, K Kropielnicka, K Lademann, R Perczyński
Applied Mathematics Letters 115, 106935, 2021
92021
Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type
K Kropielnicka
Appl. Math.(Warsaw) 35, 155-175, 2008
92008
Estimate of solutions for differential and difference functional equations with applications to difference methods
K Kropielnicka, L Sapa
Applied mathematics and computation 217 (13), 6206-6218, 2011
82011
Solving the wave equation with multifrequency oscillations
M Condon, A Iserles, K Kropielnicka, P Singh
Journal of Computational Dynamics 6 (2), 239-249, 2019
62019
Effective approximation for linear time-dependent Schrödinger equation
A Iserles, K Kropielnicka
Technical Report NA2011/15, University of Cambridge, 2011
52011
Numerical method of lines for parabolic functional differential equations
Z Kamont, K Kropielnicka
Applicable Analysis 88 (12), 1631-1650, 2009
52009
Implicit difference methods for parabolic functional differential problems of the Neumann type
K Kropielnicka
Nonlinear Oscillations 11 (3), 345-364, 2008
52008
Implicit difference functional inequalities and applications
Z Kamont, K Kropielnicka
J. Math. Inequal 2, 407-427, 2008
52008
系统目前无法执行此操作,请稍后再试。
文章 1–20