Effective approximation for the semiclassical Schrödinger equation P Bader, A Iserles, K Kropielnicka, P Singh Foundations of Computational Mathematics 14, 689-720, 2014 | 69 | 2014 |
Differential difference inequalities related to hyperbolic functional differential systems and applications Z Kamont, K Kropielnicka MATHEMATICAL INEQUALITIES AND APPLICATIONS 8 (4), 655, 2005 | 40 | 2005 |
Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential P Bader, A Iserles, K Kropielnicka, P Singh Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2016 | 36 | 2016 |
Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential A Iserles, K Kropielnicka, P Singh SIAM Journal on Numerical Analysis 56 (3), 1547-1569, 2018 | 19 | 2018 |
Compact schemes for laser–matter interaction in Schrödinger equation based on effective splittings of Magnus expansion A Iserles, K Kropielnicka, P Singh Computer Physics Communications 234, 195-201, 2019 | 17 | 2019 |
Convergence of implicit difference methods for parabolic functional differential equations K Kropielnicka Int. Journal of Mat. Analysis 1 (6), 257-277, 2007 | 17 | 2007 |
Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials A Iserles, K Kropielnicka, P Singh Journal of Computational Physics 376, 564-584, 2019 | 14 | 2019 |
Implicit difference methods for evolution functional differential equations Z Kamont, K Kropielnicka Numerical Analysis and Applications 4, 294-308, 2011 | 13 | 2011 |
The escalator boxcar train method for a system of age-structured equations in the space of measures JA Carrillo, P Gwiazda, K Kropielnicka, AK Marciniak-Czochra SIAM Journal on Numerical Analysis 57 (4), 1842-1874, 2019 | 11 | 2019 |
The escalator boxcar train method for a system of aged-structured equations P Gwiazda, K Kropielnicka, A Marciniak-Czochra arXiv preprint arXiv:1506.00016, 2015 | 11 | 2015 |
On the discretisation of the semiclassical Schrödinger equation with time-dependent potential A Iserles, K Kropielnicka, P Singh Cambridge Numerical Analysis Report NA2015/02. Cambridge, UK: Cambridge …, 2015 | 11 | 2015 |
Efficient computation of delay differential equations with highly oscillatory terms M Condon, A Deano, A Iserles, K Kropielnicka ESAIM: Mathematical Modelling and Numerical Analysis 46 (6), 1407-1420, 2012 | 11 | 2012 |
Asymptotic numerical solver for the linear Klein–Gordon equation with space-and time-dependent mass M Condon, K Kropielnicka, K Lademann, R Perczyński Applied Mathematics Letters 115, 106935, 2021 | 9 | 2021 |
Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type K Kropielnicka Appl. Math.(Warsaw) 35, 155-175, 2008 | 9 | 2008 |
Estimate of solutions for differential and difference functional equations with applications to difference methods K Kropielnicka, L Sapa Applied mathematics and computation 217 (13), 6206-6218, 2011 | 8 | 2011 |
Solving the wave equation with multifrequency oscillations M Condon, A Iserles, K Kropielnicka, P Singh Journal of Computational Dynamics 6 (2), 239-249, 2019 | 6 | 2019 |
Effective approximation for linear time-dependent Schrödinger equation A Iserles, K Kropielnicka Technical Report NA2011/15, University of Cambridge, 2011 | 5 | 2011 |
Numerical method of lines for parabolic functional differential equations Z Kamont, K Kropielnicka Applicable Analysis 88 (12), 1631-1650, 2009 | 5 | 2009 |
Implicit difference methods for parabolic functional differential problems of the Neumann type K Kropielnicka Nonlinear Oscillations 11 (3), 345-364, 2008 | 5 | 2008 |
Implicit difference functional inequalities and applications Z Kamont, K Kropielnicka J. Math. Inequal 2, 407-427, 2008 | 5 | 2008 |