Flexible diffusion modeling of long videos W Harvey, S Naderiparizi, V Masrani, C Weilbach, F Wood Advances in Neural Information Processing Systems 35, 27953-27965, 2022 | 196 | 2022 |
Structured conditional continuous normalizing flows for efficient amortized inference in graphical models C Weilbach, B Beronov, F Wood, W Harvey International Conference on Artificial Intelligence and Statistics, 4441-4451, 2020 | 21 | 2020 |
Planning as inference in epidemiological dynamics models F Wood, A Warrington, S Naderiparizi, C Weilbach, V Masrani, W Harvey, ... Frontiers in Artificial Intelligence 4, 550603, 2022 | 18 | 2022 |
Graphically structured diffusion models CD Weilbach, W Harvey, F Wood International Conference on Machine Learning, 36887-36909, 2023 | 5 | 2023 |
Inferring the structure of ordinary differential equations J Weilbach, S Gerwinn, C Weilbach, M Kandemir arXiv preprint arXiv:2107.07345, 2021 | 5 | 2021 |
All-in-one simulation-based inference M Gloeckler, M Deistler, C Weilbach, F Wood, JH Macke arXiv preprint arXiv:2404.09636, 2024 | 3 | 2024 |
If the sources could talk: Evaluating large language models for research assistance in history GG Garcia, C Weilbach arXiv preprint arXiv:2310.10808, 2023 | 3 | 2023 |
Decoupling conflicts for configurable resolution in an open replication system C Weilbach, K Kühne, A Bieniusa arXiv preprint arXiv:1508.05545, 2015 | 3 | 2015 |
Trans-dimensional generative modeling via jump diffusion models A Campbell, W Harvey, C Weilbach, V De Bortoli, T Rainforth, A Doucet Advances in Neural Information Processing Systems 36, 2024 | 2 | 2024 |
Efficient inference amortization in graphical models using structured continuous conditional normalizing flows C Weilbach, B Beronov, W Harvey, F Wood Second Symposium on Advances in Approximate Bayesian Inference, 2019 | 2 | 2019 |
Sequential Core-Set Monte Carlo B Beronov, C Weilbach, F Wood, T Campbell Uncertainty in Artificial Intelligence, 2165-2175, 2021 | 1 | 2021 |
Decoupling conflict resolution with CDVCS C Weilbach, K Kühne, A Bieniusa Proceedings of the 2nd Workshop on the Principles and Practice of …, 2016 | 1 | 2016 |
replikativ. io: Composable consistency primitives for a scalable and robust global replication system. C Weilbach, K Kühne, A Bieniusa CoRR, 2015 | 1 | 2015 |
Prospective Messaging: Learning in Networks with Communication Delays R Fayyazi, C Weilbach, F Wood arXiv preprint arXiv:2407.05494, 2024 | | 2024 |
Scaling Graphically Structured Diffusion Models CD Weilbach, W Harvey, H Shirzad, F Wood ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative …, 2023 | | 2023 |
Useful Uncertainties in Reinforcement Learning C Weilbach | | 2018 |
Techreport: Time-sensitive probabilistic inference for the edge C Weilbach, A Bieniusa arXiv preprint arXiv:1710.11057, 2017 | | 2017 |