Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning T Rashid, M Samvelyan, CS De Witt, G Farquhar, J Foerster, S Whiteson JMLR, 2020 | 2253 | 2020 |
Counterfactual Multi-Agent Policy Gradients J Foerster, G Farquhar, T Afouras, N Nardelli, S Whiteson AAAI 2018, Outstanding Student Paper Award, 2017 | 2134 | 2017 |
Learning to communicate with deep multi-agent reinforcement learning J Foerster, YM Assael, N de Freitas, S Whiteson Advances in Neural Information Processing Systems., 2137--2145, 2016 | 2017 | 2016 |
The starcraft multi-agent challenge M Samvelyan, T Rashid, CS De Witt, G Farquhar, N Nardelli, TGJ Rudner, ... arXiv preprint arXiv:1902.04043, 2019 | 951 | 2019 |
Stabilising experience replay for deep multi-agent reinforcement learning J Foerster, N Nardelli, G Farquhar, P Torr, P Kohli, S Whiteson International Conference on Machine Learning, 2017, 2017 | 728 | 2017 |
Learning with opponent-learning awareness J Foerster, RY Chen, M Al-Shedivat, S Whiteson, P Abbeel, I Mordatch Proceedings of the 17th International Conference on Autonomous Agents and …, 2018 | 597 | 2018 |
Hotword recognition M Sharifi, JN Foerster US Patent 9,928,840, 2018 | 461 | 2018 |
The hanabi challenge: A new frontier for ai research N Bard, JN Foerster, S Chandar, N Burch, M Lanctot, HF Song, E Parisotto, ... Artificial Intelligence 280, 103216, 2020 | 398 | 2020 |
The Mechanics of n-Player Differentiable Games D Balduzzi, S Racaniere, J Martens, J Foerster, K Tuyls, T Graepel Proceedings of the 35th International Conference on Machine Learning, 2018 | 314 | 2018 |
A survey of reinforcement learning informed by natural language J Luketina, N Nardelli, G Farquhar, J Foerster, J Andreas, E Grefenstette, ... arXiv preprint arXiv:1906.03926, 2019 | 296 | 2019 |
Dynamic threshold for speaker verification J Foerster, DM Casado US Patent 9,384,738, 2016 | 274 | 2016 |
Three-dimensional head-direction coding in the bat brain A Finkelstein, D Derdikman, A Rubin, JN Foerster, L Las, N Ulanovsky Nature 517 (7533), 159-164, 2015 | 249 | 2015 |
Exploratory combinatorial optimization with reinforcement learning TD Barrett, WR Clements, JN Foerster, AI Lvovsky AAAI 2020, 2019 | 197 | 2019 |
Bayesian action decoder for deep multi-agent reinforcement learning JN Foerster, F Song, E Hughes, N Burch, I Dunning, S Whiteson, ... ICML 2019, 2018 | 170 | 2018 |
Learning to communicate to solve riddles with deep distributed recurrent q-networks JN Foerster, YM Assael, N de Freitas, S Whiteson IJCAI 2016 Deep Learning Workshop, 2016 | 167 | 2016 |
"Other-Play" for Zero-Shot Coordination H Hu, A Lerer, A Peysakhovich, J Foerster ICML 2020, 2020 | 166 | 2020 |
On the pitfalls of measuring emergent communication R Lowe, J Foerster, YL Boureau, J Pineau, Y Dauphin arXiv preprint arXiv:1903.05168, 2019 | 140 | 2019 |
Hotword detection on multiple devices DM Casado, AH Gruenstein, JN Foerster US Patent 9,972,320, 2018 | 125* | 2018 |
Stable Opponent Shaping in Differentiable Games A Letcher, J Foerster, D Balduzzi, T Rocktäschel, S Whiteson Proceedings International Conference on Learning Representations 2019, 2018 | 119 | 2018 |
Multi-agent common knowledge reinforcement learning CA Schroeder de Witt, JN Foerster, G Farquhar, PHS Torr, W Boehmer, ... NeurIPS 2019, 2018 | 112* | 2018 |