关注
Kelum Gajamannage
Kelum Gajamannage
在 uri.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs
K Gajamannage, Y Park, DI Jayathilake
Expert Systems with Applications 223, 119879, 2023
322023
A nonlinear dimensionality reduction framework using smooth geodesics
K Gajamannage, R Paffenroth, EM Bollt
Pattern Recognition 87, 226-236, 2019
282019
Network topology mapping from partial virtual coordinates and graph geodesics
AP Jayasumana, R Paffenroth, G Mahindre, S Ramasamy, ...
IEEE/ACM Transactions on Networking 27 (6), 2405-2417, 2019
192019
Dimensionality reduction of collective motion by principal manifolds
K Gajamannage, S Butail, M Porfiri, EM Bollt
Physica D: Nonlinear Phenomena 291, 62-73, 2015
192015
Identifying manifolds underlying group motion in Vicsek agents
K Gajamannage, S Butail, M Porfiri, EM Bollt
The European Physical Journal Special Topics 224, 3245-3256, 2015
152015
On sampling and recovery of topology of directed social networks–a low-rank matrix completion based approach
G Mahindre, AP Jayasumana, K Gajamannage, R Paffenroth
2019 IEEE 44th Conference on Local Computer Networks (LCN), 324-331, 2019
112019
Detecting phase transitions in collective behavior using manifold's curvature
K Gajamannage, EM Bollt
Mathematical Biosciences and Engineering 14 (2), 437-453, 2017
112017
Dimenslon estlmatlon of equlty markets
N Bahadur, R Paffenroth, K Gajamannage
2019 IEEE International Conference on Big Data (Big Data), 5491-5498, 2019
102019
Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling
K Gajamannage, DI Jayathilake, Y Park, EM Bollt
Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (1), 2023
92023
Fraud detection using optimized machine learning tools under imbalance classes
M Isangediok, K Gajamannage
2022 IEEE International Conference on Big Data (Big Data), 4275-4284, 2022
92022
Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling
Y Park, K Gajamannage, DI Jayathilake, EM Bollt
arXiv preprint arXiv:2202.07022, 2022
92022
Bounded manifold completion
K Gajamannage, R Paffenroth
Pattern Recognition 111, 107661, 2021
92021
Reconstruction of fragmented trajectories of collective motion using Hadamard deep autoencoders
K Gajamannage, Y Park, R Paffenroth, AP Jayasumana
Pattern Recognition 131, 108891, 2022
62022
Modeling the lowest-cost splitting of a herd of cows by optimizing a cost function
K Gajamannage, EM Bollt, MA Porter, MS Dawkins
Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (6), 2017
62017
A Patch-based Image Denoising Method Using Eigenvectors of the Geodesics' Gramian Matrix
K Gajamannage, R Paffenroth, AP Jayasumana
arXiv preprint arXiv:2010.07769, 2020
52020
Reconstruction of agents’ corrupted trajectories of collective motion using low-rank matrix completion
K Gajamannage, R Paffenroth
2019 IEEE International Conference on Big Data (Big Data), 2826-2834, 2019
32019
Geodesic Gramian denoising applied to the images contaminated with noise sampled from diverse probability distributions
K Gajamannage, Y Park, A Sadovski
IET Image Processing 17 (1), 144-156, 2023
12023
Efficient noise filtration of images by low-rank singular vector approximations of Geodesics' Gramian Matrix
K Gajamannage, Y Park, M Muddamallappa, S Mathur
arXiv preprint arXiv:2209.13094, 2022
2022
Geodesic Gramian Denoising Applied to the Images Contaminated With Noise Sampled From Diverse Probability Distributions
Y Park, K Gajamannage, A Sadovski
arXiv preprint arXiv:2203.02600, 2022
2022
Manifold Learning and Dimensionality Reduction in Collective Motion
KD Gajamannage
Clarkson University, 2016
2016
系统目前无法执行此操作,请稍后再试。
文章 1–20