Optimal mini-batch and step sizes for saga N Gazagnadou, R Gower, J Salmon International conference on machine learning, 2142-2150, 2019 | 42 | 2019 |
Towards closing the gap between the theory and practice of SVRG O Sebbouh, N Gazagnadou, S Jelassi, F Bach, R Gower Advances in neural information processing systems 32, 2019 | 20 | 2019 |
Cutting some slack for SGD with adaptive Polyak stepsizes RM Gower, M Blondel, N Gazagnadou, F Pedregosa arXiv preprint arXiv:2202.12328, 2022 | 19 | 2022 |
RidgeSketch: A Fast sketching based solver for large scale ridge regression N Gazagnadou, M Ibrahim, RM Gower SIAM Journal on Matrix Analysis and Applications 43 (3), 1440-1468, 2022 | 6 | 2022 |
FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity K Yi, N Gazagnadou, P Richtárik, L Lyu arXiv preprint arXiv:2404.09816, 2024 | 2 | 2024 |
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? X Sun, N Gazagnadou, V Sharma, L Lyu, H Li, L Zheng Conference on Neural Information Processing Systems 2023, 2023 | 2 | 2023 |
On the hardness of robustness transfer: A perspective from Rademacher complexity over symmetric difference hypothesis space Y Deng, N Gazagnadou, J Hong, M Mahdavi, L Lyu arXiv preprint arXiv:2302.12351, 2023 | 1 | 2023 |
Expected smoothness for stochastic variance-reduced methods and sketch-and-project methods for structured linear systems N Gazagnadou Institut Polytechnique de Paris, 2021 | | 2021 |
Exercise List: Proving convergence of the Stochastic Gradient Descent and Coordinate Descent on the Ridge Regression Problem. RM Gower, F Bach, N Gazagnadou | | 2019 |
Personalization Mitigates the Perils of Local SGD for Heterogeneous Distributed Learning KK Patel, N Gazagnadou, L Wang, L Lyu | | |
Rademacher Complexity Over Class for Adversarially Robust Domain Adaptation Y Deng, N Gazagnadou, J Hong, M Mahdavi, L Lyu | | |