A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms H Badem, A Basturk, A Caliskan, ME Yuksel Neurocomputing 266, 506-526, 2017 | 126 | 2017 |
DIAGNOSIS OF THE PARKINSON DISEASE BY USING DEEP NEURAL NETWORK CLASSIFIER A Caliskan, H Badem, A BAŞTÜRK, ME YÜKSEL IU-Journal of Electrical & Electronics Engineering 17 (2), 3311-3318, 2017 | 105 | 2017 |
Improved quick artificial bee colony (iqABC) algorithm for global optimization S Aslan, H Badem, D Karaboga Soft Computing 23, 13161-13182, 2019 | 64 | 2019 |
Performance improvement of deep neural network classifiers by a simple training strategy A Caliskan, ME Yuksel, H Badem, A Basturk Engineering Applications of Artificial Intelligence 67, 14-23, 2018 | 59 | 2018 |
A new hybrid optimization method combining artificial bee colony and limited-memory BFGS algorithms for efficient numerical optimization H Badem, A Basturk, A Caliskan, ME Yuksel Applied Soft Computing 70, 826-844, 2018 | 57 | 2018 |
A deep neural network classifier for decoding human brain activity based on magnetoencephalography A Caliskan, ME Yuksel, H Badem, A Basturk Elektronika ir Elektrotechnika 23 (2), 63-67, 2017 | 33 | 2017 |
Classification of high resolution hyperspectral remote sensing data using deep neural networks ME Yuksel, NS Basturk, H Badem, A Caliskan, A Basturk Journal of Intelligent & Fuzzy Systems 34 (4), 2273-2285, 2018 | 30 | 2018 |
Regression-based neuro-fuzzy network trained by ABC algorithm for high-density impulse noise elimination A Caliskan, ZA Cil, H Badem, D Karaboga IEEE Transactions on Fuzzy Systems 28 (6), 1084-1095, 2020 | 27 | 2020 |
Classification and diagnosis of the parkinson disease by stacked autoencoder H Badem, A Caliskan, A Basturk, ME Yuksel 2016 National Conference on Electrical, Electronics and Biomedical …, 2016 | 26 | 2016 |
Classification of human activity by using a Stacked Autoencoder H Badem, A Caliskan, A Basturk, ME Yuksel 2016 medical technologies national congress (TIPTEKNO), 1-4, 2016 | 22 | 2016 |
Deep neural network based diagnosis system for melanoma skin cancer A Baştürk, ME Yüksei, H Badem, A Çalışkan 2017 25th Signal Processing and Communications Applications Conference (SIU …, 2017 | 21 | 2017 |
Prediction of leakage from an axial piston pump slipper with circular dimples using deep neural networks Ö Özmen, C Sinanoğlu, A Caliskan, H Badem Chinese Journal of Mechanical Engineering 33, 1-11, 2020 | 20 | 2020 |
Parkinson Hastaliğinin Ses Sinyalleri Üzerinden Makine Öğrenmesi Teknikleri ile Tanimlanmasi H BADEM Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 (2), 630-637, 2019 | 19 | 2019 |
Leukemia Sub-Type Classification by Using Machine Learning Techniques on Gene Expression E Simsek, H Badem, IT Okumus In Lecture Notes in Networks and Systems 227, 629-637, 2022 | 17 | 2022 |
A new artificial bee colony algorithm employing intelligent forager forwarding strategies S Aslan, D Karaboga, H Badem Applied Soft Computing 96, 106656, 2020 | 16 | 2020 |
Deep neural network classifier for hand movement prediction A Baştürk, ME Yüksel, A Çalışkan, H Badem 2017 25th Signal Processing and Communications Applications Conference (SIU …, 2017 | 11 | 2017 |
Feature selection based on artificial bee colony for parkinson disease diagnosis H Badem, D Turkusagi, A Caliskan, ZA Çil 2019 Medical Technologies Congress (TIPTEKNO), 1-4, 2019 | 7 | 2019 |
Detecting direction of pepper stem by using CUDA-based accelerated hybrid intuitionistic fuzzy edge detection and ANN M Gunes, H Badem Journal of Sensors 2016, 2016 | 7 | 2016 |
The Effect of Autoencoders over Reducing the Dimensionality of A Dermatology Data Set A Caliskan, H Badem, A Basturk, ME Yuksel Tıp Teknolojileri Kongresi, (TIPTEKNO’16), 2016 | 5 | 2016 |
CUDA-based hybrid intuitionistic fuzzy edge detection algorithm E Yalçin, H Badem, M Güneş 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6, 2015 | 5 | 2015 |