A new strategy of characterizing hydrocarbon fuels using FTIR spectra and generalized linear model with grouped-Lasso regularization Y Wang, W Wei, Y Zhang, RK Hanson Fuel 287, 119419, 2021 | 26 | 2021 |
Neural network approach to response surface development for reaction model optimization and uncertainty minimization Y Zhang, W Dong, LA Vandewalle, R Xu, GP Smith, H Wang Combustion and Flame 251, 112679, 2023 | 18 | 2023 |
High-Performance Lithium–Sulfur Batteries via Molecular Complexation P Wang, N Kateris, B Li, Y Zhang, J Luo, C Wang, Y Zhang, ... Journal of the American Chemical Society 145 (34), 18865-18876, 2023 | 16 | 2023 |
Foundational fuel chemistry model version 2.0 (FFCM-2) Y Zhang, W Dong, L Vandewalle, R Xu, G Smith, H Wang | 16 | 2023 |
Stable sodium-sulfur electrochemistry enabled by phosphorus-based complexation C Wang*, Y Zhang*, Y Zhang, J Luo, X Hu, E Matios, J Crane, R Xu, ... Proceedings of the National Academy of Sciences 118 (49), e2116184118, 2021 | 11 | 2021 |
Songnet: Real-time music classification C Zhang, Y Zhang, C Chen Stanford University Press, 2019 | 10 | 2019 |
Foundational Fuel Chemistry Model 2–iso-Butene chemistry and application in modeling alcohol-to-jet fuel combustion Y Zhang, W Dong, R Xu, GP Smith, H Wang Combustion and Flame 259, 113168, 2024 | 6 | 2024 |
Foundational Fuel Chemistry Model Version 2.0 (FFCM-2)(2023) Y Zhang, W Dong, L Vandewalle, R Xu, G Smith, H Wang URL https://web. stanford. edu/group/haiwanglab/FFCM2, 0 | 5 | |
The death of feature engineering? —— BERT with linguistic features on SQuAD 2.0 Y Zhang, J Li Stanford University Press, 2019 | 4* | 2019 |
DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery I Alisjahbana, J Li, Y Zhang arXiv preprint arXiv:2405.04800, 2024 | 2 | 2024 |
Aspects of fundamental reaction kinetics and legacy combustion properties in data-assimilated combustion reaction model development W Dong, Y Zhang, GP Smith, H Wang Proceedings of the Combustion Institute 40 (1-4), 105410, 2024 | 2 | 2024 |
Uncertainty minimization for an alcohol-to-jet (ATJ) combustion reaction model Y Zhang, W Dong, G Smith, H Wang 13th U.S. National Combustion Meeting, 2023 | 2 | 2023 |
Prompt-Tuned Multi-Task Taxonomic Transformer (PTMTTaxoFormer) R Vasantha, N Nguyen, Y Zhang Proceedings of the 2024 Conference on Empirical Methods in Natural Language …, 2024 | | 2024 |
Foundational Fuel Chemistry Model Version 2.0 (FFCM-2) Y Zhang, W Dong, L Vandewalle, R Xu, G Smith, H Wang https://web.stanford.edu/group/haiwanglab/FFCM2/, 2023 | | 2023 |
Label efficient multilingual text classification with multi-stage adaptive pretraining Y Zhang, P Wei, A Palghat Udayashankar Amazon Machine Learning Conference, Workshop on Data Efficient Learning and …, 2021 | | 2021 |
Optimization and uncertainty minimization of Foundational Fuel Chemistry Model 2 Y Zhang, G Smith, H Wang 12th U.S. National Combustion Meeting, 2021 | | 2021 |
Optimization and uncertainty minimization of reaction models using a neural-network-based approach Y Zhang, G Smith, H Wang 12th U.S. National Combustion Meeting, 2021 | | 2021 |
Trailblazing Next Generation Sodium Battery Chemistry through Tunable Sodium Phosphorothioates C Wang, Y Zhang, H Wang, W Li Electrochemical Society Meeting Abstracts prime2020, 503-503, 2020 | | 2020 |
Subgraph Pattern Matching on Graphs with Deep Representations Y Zhang, Z Yang, Z Lou Stanford University Press, 2019 | | 2019 |