Introducing molecular electronics G.(Gianaurelio) Cuniberti, G.(Giorgos) Fagas, K Richter Springer, 2005 | 609* | 2005 |
The potential and global outlook of integrated photonics for quantum technologies E Pelucchi, G Fagas, I Aharonovich, D Englund, E Figueroa, Q Gong, ... Nature Reviews Physics 4 (3), 194-208, 2022 | 309 | 2022 |
Silicon nanowire band gap modification M Nolan, S O'Callaghan, G Fagas, JC Greer, T Frauenheim Nano letters 7 (1), 34-38, 2007 | 288 | 2007 |
Theory of an all-carbon molecular switch R Gutiérrez, G Fagas, G Cuniberti, F Grossmann, R Schmidt, K Richter Physical Review B 65 (11), 113410, 2002 | 129 | 2002 |
Simulation of junctionless Si nanowire transistors with 3 nm gate length L Ansari, B Feldman, G Fagas, JP Colinge, JC Greer Applied Physics Letters 97 (6), 2010 | 124 | 2010 |
Deformation potentials and electron− phonon coupling in silicon nanowires F Murphy-Armando, G Fagas, JC Greer Nano letters 10 (3), 869-873, 2010 | 78 | 2010 |
Ab-initio non-equilibrium Green’s function formalism for calculating electron transport in molecular devices K Stokbro, J Taylor, M Brandbyge, H Guo Introducing Molecular Electronics, 117-151, 2005 | 75 | 2005 |
Lattice dynamics of a disordered solid-solid interface G Fagas, AG Kozorezov, CJ Lambert, JK Wigmore, A Peacock, A Poelaert, ... Physical review b 60 (9), 6459, 1999 | 71 | 1999 |
Fingerprints of mesoscopic leads in the conductance of a molecular wire G Cuniberti, G Fagas, K Richter Chemical physics 281 (2-3), 465-476, 2002 | 69 | 2002 |
Phonon-mediated thermal conductance of mesoscopic wires with rough edges A Kambili, G Fagas, VI Fal’ko, CJ Lambert Physical review b 60 (23), 15593, 1999 | 64 | 1999 |
A proposed confinement modulated gap nanowire transistor based on a metal (tin) L Ansari, G Fagas, JP Colinge, JC Greer Nano letters 12 (5), 2222-2227, 2012 | 63 | 2012 |
Geometrical enhancement of the proximity effect in quantum wires with extended superconducting tunnel contacts G Fagas, G Tkachov, A Pfund, K Richter Physical Review B—Condensed Matter and Materials Physics 71 (22), 224510, 2005 | 59 | 2005 |
Chemical trends in the work function of modified Si (111) surfaces: A DFT study HH Arefi, G Fagas The Journal of Physical Chemistry C 118 (26), 14346-14354, 2014 | 57 | 2014 |
Tunnelling in alkanes anchored to gold electrodes via amine end groups G Fagas, JC Greer Nanotechnology 18 (42), 424010, 2007 | 50 | 2007 |
Ballistic conductance in oxidized Si nanowires G Fagas, JC Greer Nano letters 9 (5), 1856-1860, 2009 | 49 | 2009 |
Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor E Buitrago, G Fagas, MFB Badia, YM Georgiev, M Berthomé, AM Ionescu Sensors and Actuators B: Chemical 183, 1-10, 2013 | 47 | 2013 |
Electron transport in nanotube–molecular-wire hybrids G Fagas, G Cuniberti, K Richter Physical Review B 63 (4), 045416, 2001 | 47 | 2001 |
Tunnel currents across silane diamines/dithiols and alkane diamines/dithiols: A comparative computational study S McDermott, CB George, G Fagas, JC Greer, MA Ratner The Journal of Physical Chemistry C 113 (2), 744-750, 2009 | 46 | 2009 |
Independent particle descriptions of tunneling using the many-body quantum transport approach G Fagas, P Delaney, JC Greer Physical Review B—Condensed Matter and Materials Physics 73 (24), 241314, 2006 | 46 | 2006 |
Energy challenges for ICT G Fagas, JP Gallagher, L Gammaitoni, DJ Paul ICT-Energy Concepts for Energy Efficiency and Sustainability, 1-36, 2017 | 42 | 2017 |