A review on the long short-term memory model G Van Houdt, C Mosquera, G Nápoles Artificial Intelligence Review 53 (8), 5929-5955, 2020 | 1084 | 2020 |
A review on methods and software for fuzzy cognitive maps G Felix, G Nápoles, R Falcon, W Froelich, K Vanhoof, R Bello Artificial intelligence review 52, 1707-1737, 2019 | 287 | 2019 |
Detecting malicious URLs using machine learning techniques F Vanhoenshoven, G Nápoles, R Falcon, K Vanhoof, M Köppen 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1-8, 2016 | 131 | 2016 |
On the convergence of sigmoid fuzzy cognitive maps G Nápoles, E Papageorgiou, R Bello, K Vanhoof Information Sciences 349, 154-171, 2016 | 112 | 2016 |
Two-steps learning of Fuzzy Cognitive Maps for prediction and knowledge discovery on the HIV-1 drug resistance G Nápoles, I Grau, R Bello, R Grau Expert Systems with Applications 41 (3), 821-830, 2014 | 102 | 2014 |
Learning and convergence of fuzzy cognitive maps used in pattern recognition G Nápoles, E Papageorgiou, R Bello, K Vanhoof Neural Processing Letters 45, 431-444, 2017 | 80 | 2017 |
Fuzzy cognitive maps based models for pattern classification: Advances and challenges G Nápoles, M Leon Espinosa, I Grau, K Vanhoof, R Bello Soft Computing Based Optimization and Decision Models: To Commemorate the …, 2018 | 76 | 2018 |
FCM expert: software tool for scenario analysis and pattern classification based on fuzzy cognitive maps G Nápoles, ML Espinosa, I Grau, K Vanhoof International Journal on Artificial Intelligence Tools 27 (07), 1860010, 2018 | 71 | 2018 |
Rough cognitive networks G Nápoles, I Grau, E Papageorgiou, R Bello, K Vanhoof Knowledge-Based Systems 91, 46-61, 2016 | 55 | 2016 |
Fuzzy-rough cognitive networks G Nápoles, C Mosquera, R Falcon, I Grau, R Bello, K Vanhoof Neural Networks 97, 19-27, 2018 | 50 | 2018 |
On the accuracy–convergence tradeoff in sigmoid fuzzy cognitive maps G Nápoles, L Concepción, R Falcon, R Bello, K Vanhoof IEEE Transactions on Fuzzy Systems 26 (4), 2479-2484, 2017 | 46 | 2017 |
How to improve the convergence on sigmoid fuzzy cognitive maps? G Nápoles, R Bello, K Vanhoof Intelligent Data Analysis 18 (6S), S77-S88, 2014 | 45 | 2014 |
Deep neural network to extract high-level features and labels in multi-label classification problems M Bello, G Nápoles, R Sánchez, R Bello, K Vanhoof Neurocomputing 413, 259-270, 2020 | 39 | 2020 |
Constricted Particle Swarm Optimization based algorithm for global optimization G Nápoles, I Grau, R Bello Polibits, 05-11, 2012 | 38 | 2012 |
Pseudoinverse learning of fuzzy cognitive maps for multivariate time series forecasting F Vanhoenshoven, G Nápoles, W Froelich, JL Salmeron, K Vanhoof Applied Soft Computing 95, 106461, 2020 | 35 | 2020 |
Data quality measures based on granular computing for multi-label classification M Bello, G Nápoles, K Vanhoof, R Bello Information Sciences 560, 51-67, 2021 | 31 | 2021 |
Explicit methods for attribute weighting in multi-attribute decision-making: a review study J Pena, G Nápoles, Y Salgueiro Artificial Intelligence Review 53, 3127-3152, 2020 | 31 | 2020 |
Short-term cognitive networks, flexible reasoning and nonsynaptic learning G Nápoles, F Vanhoenshoven, K Vanhoof Neural Networks 115, 72-81, 2019 | 31 | 2019 |
Rough cognitive ensembles G Nápoles, R Falcon, E Papageorgiou, R Bello, K Vanhoof International Journal of Approximate Reasoning 85, 79-96, 2017 | 29 | 2017 |
Deterministic learning of hybrid fuzzy cognitive maps and network reduction approaches G Nápoles, A Jastrzębska, C Mosquera, K Vanhoof, W Homenda Neural Networks 124, 258-268, 2020 | 28 | 2020 |