关注
Mao Su
Mao Su
Shanghai AI Laboratory
在 pjlab.org.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery
Y Zhou, M Su, X Yu, Y Zhang, JG Wang, X Ren, R Cao, W Xu, DR Baer, ...
Nature nanotechnology 15 (3), 224-230, 2020
3652020
Atomic origins of water-vapour-promoted alloy oxidation
L Luo, M Su, P Yan, L Zou, DK Schreiber, DR Baer, Z Zhu, G Zhou, ...
Nature materials 17 (6), 514-518, 2018
1512018
Investigation of ion–solvent interactions in nonaqueous electrolytes using in situ liquid SIMS
Y Zhang, M Su, X Yu, Y Zhou, J Wang, R Cao, W Xu, C Wang, DR Baer, ...
Analytical chemistry 90 (5), 3341-3348, 2018
512018
Chemllm: A chemical large language model
D Zhang, W Liu, Q Tan, J Chen, H Yan, Y Yan, J Li, W Huang, X Yue, ...
arXiv preprint arXiv:2402.06852, 2024
462024
Transferable equivariant graph neural networks for the Hamiltonians of molecules and solids
Y Zhong, H Yu, M Su, X Gong, H Xiang
npj Computational Materials 9 (1), 182, 2023
202023
A brief review of continuous models for ionic solutions: the Poisson–Boltzmann and related theories
M Su, Y Wang
Communications in Theoretical Physics 72 (6), 067601, 2020
112020
Efficient determination of the Hamiltonian and electronic properties using graph neural network with complete local coordinates
M Su, JH Yang, HJ Xiang, XG Gong
Machine Learning: Science and Technology 4 (3), 035010, 2023
92023
Geometry-enhanced pretraining on interatomic potentials
T Cui, C Tang, M Su, S Zhang, Y Li, L Bai, Y Dong, X Gong, W Ouyang
Nature Machine Intelligence 6 (4), 428-436, 2024
72024
Poisson–Boltzmann theory with non-linear ion correlations
M Su, Z Xu, Y Wang
Journal of Physics: Condensed Matter 31 (35), 355101, 2019
72019
Transferable E (3) equivariant parameterization for hamiltonian of molecules and solids
Y Zhong, H Yu, M Su, X Gong, H Xiang
arXiv preprint arXiv:2210.16190, 2022
52022
Exploring large-lattice-mismatched interfaces with neural network potentials: the case of the CdS/CdTe heterostructure
M Su, JH Yang, ZP Liu, XG Gong
The Journal of Physical Chemistry C 126 (31), 13366-13372, 2022
52022
Chemvlm: Exploring the power of multimodal large language models in chemistry area
J Li, D Zhang, X Wang, Z Hao, J Lei, Q Tan, C Zhou, W Liu, Y Yang, ...
arXiv preprint arXiv:2408.07246, 2024
42024
Physical formula enhanced multi-task learning for pharmacokinetics prediction
R Li, D Zhou, A Shen, A Zhang, M Su, M Li, H Chen, G Chen, Y Zhang, ...
arXiv preprint arXiv:2404.10354, 2024
32024
Gpip: Geometry-enhanced pre-training on interatomic potentials
T Cui, C Tang, M Su, S Zhang, Y Li, L Bai, Y Dong, X Gong, W Ouyang
arXiv preprint arXiv:2309.15718, 2023
32023
Seeing and understanding: Bridging vision with chemical knowledge via chemvlm
J Li, D Zhang, X Wang, Z Hao, J Lei, Q Tan, C Zhou, W Liu, W Wang, ...
arXiv e-prints, arXiv: 2408.07246, 2024
22024
Efficient prediction of density functional theory hamiltonian with graph neural network
M Su, JH Yang, HJ Xiang, XG Gong
Preprint at https://arxiv. org/abs/2205.05475, 2022
22022
Evidential Deep Learning for Interatomic Potentials
H Xu, T Cui, C Tang, D Zhou, Y Li, X Gao, X Gong, W Ouyang, S Zhang, ...
arXiv preprint arXiv:2407.13994, 2024
2024
Online Test-time Adaptation for Interatomic Potentials
S Zhang, T Cui, C Tang, D Zhou, Y Li, X Gong, W Ouyang, M Su
2024
Online Test-time Adaptation for Interatomic Potentials
T Cui, C Tang, D Zhou, Y Li, X Gong, W Ouyang, M Su, S Zhang
arXiv preprint arXiv:2405.08308, 2024
2024
Efficient determination of the Hamiltonian and electronic properties using graph neural network
X Gong, M Su, J Yang, H Xiang
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20