Unsupervised out-of-distribution detection by maximum classifier discrepancy Q Yu, K Aizawa Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 181 | 2019 |
Multi-task curriculum framework for open-set semi-supervised learning Q Yu, D Ikami, G Irie, K Aizawa Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 116 | 2020 |
Divergence optimization for noisy universal domain adaptation Q Yu, A Hashimoto, Y Ushiku Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 30 | 2021 |
Food image recognition by personalized classifier Q Yu, M Anzawa, S Amano, M Ogawa, K Aizawa 2018 25th IEEE international conference on image processing (ICIP), 171-175, 2018 | 28 | 2018 |
Self-labeling framework for novel category discovery over domains Q Yu, D Ikami, G Irie, K Aizawa Proceedings of the AAAI Conference on Artificial Intelligence 36 (3), 3161-3169, 2022 | 26 | 2022 |
Locoop: Few-shot out-of-distribution detection via prompt learning A Miyai, Q Yu, G Irie, K Aizawa Advances in Neural Information Processing Systems 36, 2024 | 24 | 2024 |
Noisy annotation refinement for object detection J Mao, Q Yu, Y Yamakata, K Aizawa arXiv preprint arXiv:2110.10456, 2021 | 13 | 2021 |
Noisy localization annotation refinement for object detection J Mao, Q Yu, K Aizawa IEICE TRANSACTIONS on Information and Systems 104 (9), 1478-1485, 2021 | 12 | 2021 |
Zero-shot in-distribution detection in multi-object settings using vision-language foundation models A Miyai, Q Yu, G Irie, K Aizawa arXiv preprint arXiv:2304.04521, 2023 | 9 | 2023 |
Rethinking rotation in self-supervised contrastive learning: Adaptive positive or negative data augmentation A Miyai, Q Yu, D Ikami, G Irie, K Aizawa Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023 | 7 | 2023 |
The aleatoric uncertainty estimation using a separate formulation with virtual residuals T Kawashima, Q Yu, A Asai, D Ikami, K Aizawa 2020 25th International Conference on Pattern Recognition (ICPR), 1438-1445, 2021 | 5 | 2021 |
Unknown class label cleaning for learning with open-set noisy labels Q Yu, K Aizawa 2020 IEEE International Conference on Image Processing (ICIP), 1731-1735, 2020 | 5 | 2020 |
CAN PRE-TRAINED NETWORKS DETECT FAMILIAR OUT-OF-DISTRIBUTION DATA? A Miyai, Q Yu, G Irie, K Aizawa arXiv preprint arXiv:2310.00847, 2023 | 4 | 2023 |
Personalized food image classifier considering time-dependent and item-dependent food distribution Q Yu, M Anzawa, S Amano, K Aizawa IEICE TRANSACTIONS on Information and Systems 102 (11), 2120-2126, 2019 | 4 | 2019 |
Qing YU Q Yu | 4 | 2006 |
Open-set domain adaptation with visual-language foundation models Q Yu, G Irie, K Aizawa arXiv preprint arXiv:2307.16204, 2023 | 3 | 2023 |
Frame-level label refinement for skeleton-based weakly-supervised action recognition Q Yu, K Fujiwara Proceedings of the AAAI Conference on Artificial Intelligence 37 (3), 3322-3330, 2023 | 3 | 2023 |
Unsolvable Problem Detection: Evaluating Trustworthiness of Vision Language Models A Miyai, J Yang, J Zhang, Y Ming, Q Yu, G Irie, Y Li, H Li, Z Liu, K Aizawa arXiv preprint arXiv:2403.20331, 2024 | 2 | 2024 |
Self-labeling framework for open-set domain adaptation with few labeled samples Q Yu, G Irie, K Aizawa IEEE Transactions on Multimedia 26, 1474-1487, 2023 | 2 | 2023 |
Noise-Avoidance Sampling for Annotation Missing Object Detection J Mao, Q Yu, G Irie, K Aizawa 2023 IEEE International Conference on Image Processing (ICIP), 1575-1579, 2023 | 1 | 2023 |