受强制性开放获取政策约束的文章 - Tsung-Yu Hsieh了解详情
可在其他位置公开访问的文章:10 篇
Adversarial attacks on graph neural networks via node injections: A hierarchical reinforcement learning approach
Y Sun, S Wang, X Tang, TY Hsieh, V Honavar
Proceedings of the Web Conference 2020, 673-683, 2020
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Explainable multivariate time series classification: a deep neural network which learns to attend to important variables as well as time intervals
TY Hsieh, S Wang, Y Sun, V Honavar
Proceedings of the 14th ACM international conference on web search and data …, 2021
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Minority oversampling in kernel adaptive subspaces for class imbalanced datasets
CT Lin, TY Hsieh, YT Liu, YY Lin, CN Fang, YK Wang, G Yen, NR Pal, ...
IEEE Transactions on Knowledge and Data Engineering 30 (5), 950-962, 2017
强制性开放获取政策: US Department of Defense, Australian Research Council
Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data
Y El-Manzalawy, TY Hsieh, M Shivakumar, D Kim, V Honavar
BMC medical genomics 11, 19-31, 2018
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Non-target-specific node injection attacks on graph neural networks: A hierarchical reinforcement learning approach
Y Sun, S Wang, X Tang, TY Hsieh, V Honavar
Proc. WWW 3, 2020
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Multi-view network embedding via graph factorization clustering and co-regularized multi-view agreement
Y Sun, N Bui, TY Hsieh, V Honavar
2018 ieee international conference on data mining workshops (icdmw), 1006-1013, 2018
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Functional autoencoders for functional data representation learning
TY Hsieh, Y Sun, S Wang, V Honavar
Proceedings of the 2021 SIAM International Conference on Data Mining (SDM …, 2021
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Adaptive structural co-regularization for unsupervised multi-view feature selection
TY Hsieh, Y Sun, S Wang, V Honavar
2019 IEEE International Conference on Big Knowledge (ICBK), 87-96, 2019
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
SrVARM: State regularized vector autoregressive model for joint learning of hidden state transitions and state-dependent inter-variable dependencies from multi-variate time series
TY Hsieh, Y Sun, X Tang, S Wang, VG Honavar
Proceedings of the Web Conference 2021, 2270-2280, 2021
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Compositional stochastic average gradient for machine learning and related applications
TY Hsieh, Y El-Manzalawy, Y Sun, V Honavar
Intelligent Data Engineering and Automated Learning–IDEAL 2018: 19th …, 2018
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
出版信息和资助信息由计算机程序自动确定