On feature collapse and deep kernel learning for single forward pass uncertainty J van Amersfoort, L Smith, A Jesson, O Key, Y Gal arXiv preprint arXiv:2102.11409, 2021 | 158* | 2021 |
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties L Schut, O Key, R Mc Grath, L Costabello, B Sacaleanu, Y Gal International Conference on Artificial Intelligence and Statistics, 1756-1764, 2021 | 55 | 2021 |
No train no gain: Revisiting efficient training algorithms for transformer-based language models J Kaddour, O Key, P Nawrot, P Minervini, MJ Kusner Advances in Neural Information Processing Systems 36, 2024 | 22 | 2024 |
Interlocking Backpropagation: Improving depthwise model-parallelism AN Gomez, O Key, K Perlin, S Gou, N Frosst, J Dean, Y Gal Journal of Machine Learning Research 23 (171), 1-28, 2022 | 22 | 2022 |
Composite goodness-of-fit tests with kernels O Key, A Gretton, FX Briol, T Fernandez arXiv preprint arXiv:2111.10275, 2021 | 16 | 2021 |
Towards Healing the Blindness of Score Matching M Zhang, O Key, P Hayes, D Barber, B Paige, FX Briol arXiv preprint arXiv:2209.07396, 2022 | 14 | 2022 |
Optimally-weighted estimators of the maximum mean discrepancy for likelihood-free inference A Bharti, M Naslidnyk, O Key, S Kaski, FX Briol International Conference on Machine Learning, 2289-2312, 2023 | 12 | 2023 |
On signal-to-noise ratio issues in variational inference for deep Gaussian processes TGJ Rudner, O Key, Y Gal, T Rainforth International Conference on Machine Learning, 9148-9156, 2021 | 3 | 2021 |
Scalable Data Assimilation with Message Passing O Key, S Takao, D Giles, MP Deisenroth arXiv preprint arXiv:2404.12968, 2024 | | 2024 |
Approximate Top-k for Increased Parallelism O Key, L Ribar, A Cattaneo, L Hudlass-Galley, D Orr Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning, 0 | | |