Adversarially learned inference V Dumoulin, I Belghazi, B Poole, O Mastropietro, A Lamb, M Arjovsky, ... arXiv preprint arXiv:1606.00704, 2016 | 1786 | 2016 |
Manifold mixup: Better representations by interpolating hidden states A Lamb, V Verma, C Beckham, A Najafi, I Mitliagkas, A Courville, ... International Conference on Machine Learning (ICML) 2019, and arXiv preprint …, 2018 | 1401* | 2018 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv e-prints, arXiv: 1605.02688, 2016 | 1193* | 2016 |
Interpolation consistency training for semi-supervised learning V Verma, A Lamb, J Kannala, Y Bengio, D Lopez-Paz International Joint Conference on Artificial Intelligence (IJCAI) 2019, and …, 2019 | 774 | 2019 |
Professor forcing: A new algorithm for training recurrent networks A Lamb, A Goyal, Y Zhang, S Zhang, AC Courville, Y Bengio Advances in neural information processing systems 29, 4601-4609, 2016 | 721 | 2016 |
Deep learning for classical japanese literature T Clanuwat, M Bober-Irizar, A Kitamoto, A Lamb, K Yamamoto, D Ha arXiv preprint arXiv:1812.01718, 2018 | 687 | 2018 |
Separating fact from fear: Tracking flu infections on twitter A Lamb, M Paul, M Dredze Proceedings of the 2013 Conference of the North American Chapter of the …, 2013 | 385 | 2013 |
Recurrent independent mechanisms A Goyal, A Lamb, J Hoffmann, S Sodhani, S Levine, Y Bengio, ... arXiv preprint arXiv:1909.10893, 2019 | 338 | 2019 |
Variance reduction in sgd by distributed importance sampling G Alain, A Lamb, C Sankar, A Courville, Y Bengio arXiv preprint arXiv:1511.06481, 2015 | 217 | 2015 |
Graphmix: Improved training of gnns for semi-supervised learning V Verma, M Qu, K Kawaguchi, A Lamb, Y Bengio, J Kannala, J Tang Proceedings of the AAAI conference on artificial intelligence 35 (11), 10024 …, 2021 | 168 | 2021 |
Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy A Lamb, V Verma, J Kannala, Y Bengio Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019 | 103 | 2019 |
KuroNet: Regularized Residual U-Nets for End-to-End Kuzushiji Character Recognition A Lamb, T Clanuwat, A Kitamoto Springer Nature Computer Science and ICDAR 2019 (Oral), 2020 | 94* | 2020 |
Coordination among neural modules through a shared global workspace A Goyal, A Didolkar, A Lamb, K Badola, NR Ke, N Rahaman, J Binas, ... arXiv preprint arXiv:2103.01197, 2021 | 90 | 2021 |
Discriminative Regularization for Generative Models A Lamb, V Dumoulin, A Courville DeepVision Workshop (CVPR), 2016 | 84 | 2016 |
Learning to combine top-down and bottom-up signals in recurrent neural networks with attention over modules S Mittal, A Lamb, A Goyal, V Voleti, M Shanahan, G Lajoie, M Mozer, ... International Conference on Machine Learning, 6972-6986, 2020 | 71 | 2020 |
On adversarial mixup resynthesis C Beckham, S Honari, V Verma, AM Lamb, F Ghadiri, RD Hjelm, Y Bengio, ... Advances in neural information processing systems 32, 2019 | 70 | 2019 |
State-reification networks: Improving generalization by modeling the distribution of hidden representations A Lamb, J Binas, A Goyal, S Subramanian, I Mitliagkas, D Kazakov, ... International Conference on Machine Learning (ICML) 2019, 2019 | 67* | 2019 |
Object files and schemata: Factorizing declarative and procedural knowledge in dynamical systems A Goyal, A Lamb, P Gampa, P Beaudoin, S Levine, C Blundell, Y Bengio, ... arXiv preprint arXiv:2006.16225, 2020 | 62* | 2020 |
Discrete-Valued Neural Communication D Liu, A Lamb, K Kawaguchi, A Goyal, C Sun, MC Mozer, Y Bengio arXiv preprint arXiv:2107.02367, 2021 | 50 | 2021 |
Kaokore: A pre-modern japanese art facial expression dataset Y Tian, C Suzuki, T Clanuwat, M Bober-Irizar, A Lamb, A Kitamoto arXiv preprint arXiv:2002.08595, 2020 | 33 | 2020 |