Variational principles in mathematical physics, geometry, and economics: Qualitative analysis of nonlinear equations and unilateral problems A Kristály, VD Rădulescu, C Varga Cambridge University Press, 2010 | 297 | 2010 |
Infinitely many solutions for a differential inclusion problem in RN A Kristály Journal of Differential Equations 220 (2), 511-530, 2006 | 91 | 2006 |
Multiple solutions for p-Laplacian type equations A Kristály, H Lisei, C Varga Nonlinear Analysis: Theory, Methods & Applications 68 (5), 1375-1381, 2008 | 79 | 2008 |
Nash-type equilibria on Riemannian manifolds: a variational approach A Kristály Journal de Mathématiques Pures et Appliquées 101 (5), 660-688, 2014 | 63 | 2014 |
Existence of five nonzero solutions with exact sign for a p-Laplacian equation M Filippakis, A Kristály, NS Papageorgiou Discrete Contin. Dyn. Syst 24 (2), 405-440, 2009 | 56 | 2009 |
Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains A Kristály Proceedings of the Edinburgh Mathematical Society 48 (2), 465-477, 2005 | 50 | 2005 |
Multiple solutions for elliptic problems with singular and sublinear potentials A Kristály, C Varga Proceedings of the American Mathematical Society 135 (7), 2121-2126, 2007 | 47 | 2007 |
Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting A Kristály, M Mihăilescu, V Rădulescu Proceedings of the Royal Society of Edinburgh Section A: Mathematics 139 (2 …, 2009 | 46 | 2009 |
Set-valued versions of Ky Fan's inequality with application to variational inclusion theory A Kristály, C Varga Journal of mathematical analysis and applications 282 (1), 8-20, 2003 | 46 | 2003 |
Sharp uncertainty principles on Riemannian manifolds: the influence of curvature A Kristály Journal de Mathématiques Pures et Appliquées 119, 326-346, 2018 | 44 | 2018 |
Geometric inequalities on Heisenberg groups ZM Balogh, A Kristály, K Sipos Calculus of variations and partial differential equations 57 (2), 61, 2018 | 43 | 2018 |
Location of Nash equilibria: a Riemannian geometrical approach A Kristály Proceedings of the American Mathematical Society 138 (5), 1803-1810, 2010 | 42 | 2010 |
Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions A Kristály, M Mihăilescu, V Rădulescu Journal of Difference Equations and Applications 17 (10), 1431-1440, 2011 | 41 | 2011 |
On the Schrödinger–Maxwell system involving sublinear terms A Kristály, D Repovš Nonlinear Analysis: Real World Applications 13 (1), 213-223, 2012 | 40 | 2012 |
A non-smooth three critical points theorem with applications in differential inclusions A Kristály, W Marzantowicz, C Varga Journal of Global Optimization 46 (1), 49-62, 2010 | 40 | 2010 |
Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature ZM Balogh, A Kristály Mathematische Annalen 385 (3), 1747-1773, 2023 | 39 | 2023 |
Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications A Kristály, S Ohta Mathematische Annalen 357 (2), 711-726, 2013 | 37 | 2013 |
Lions-type compactness and Rubik actions on the Heisenberg group ZM Balogh, A Kristály Calculus of variations and partial differential equations 48 (1), 89-109, 2013 | 37 | 2013 |
Infinitely many radial and non-radial solutions for a class of hemivariational inequalities A Kristály Rocky Mountain Journal of Mathematics 35 (4), 1173-1190, 2005 | 36 | 2005 |
Multiplicity results for an eigenvalue problem for hemivariational inequalities in strip-like domains A Kristály Set-Valued Analysis 13, 85-103, 2005 | 35 | 2005 |