Multirate partitioned runge-kutta methods M Günther, A Kvaernø, P Rentrop BIT Numerical Mathematics 41, 504-514, 2001 | 169 | 2001 |
Singly diagonally implicit Runge–Kutta methods with an explicit first stage A Kværnø BIT Numerical Mathematics 44, 489-502, 2004 | 149 | 2004 |
Stability of multirate Runge-Kutta schemes A Kværnø International Journal of Differential Equations and Applications 1 (1), 97-105, 2000 | 84 | 2000 |
B–series analysis of stochastic Runge–Kutta methods that use an iterative scheme to compute their internal stage values K Debrabant, A Kværnø SIAM journal on numerical analysis 47 (1), 181-203, 2009 | 61 | 2009 |
The behaviour of the local error in splitting methods applied to stiff problems R Kozlov, A Kværnø, B Owren Journal of Computational Physics 195 (2), 576-593, 2004 | 30 | 2004 |
Order conditions for stochastic Runge–Kutta methods preserving quadratic invariants of Stratonovich SDEs S Anmarkrud, A Kværnø Journal of Computational and Applied Mathematics 316, 40-46, 2017 | 25 | 2017 |
The use of Butcher series in the analysis of Newton-like iterations in Runge–Kutta formulas KR Jackson, A Kværnø, SP Nørsett Applied Numerical Mathematics 15 (3), 341-356, 1994 | 25 | 1994 |
Multirate methods in electrical circuit simulation A Bartel, M Günther, A Kværnø Progress in Industrial Mathematics at ECMI 2000, 258-265, 2002 | 24 | 2002 |
Runge-kutta research in trondheim A Kværnø, SP Nørsett, B Owren Applied numerical mathematics 22 (1-3), 263-277, 1996 | 24 | 1996 |
Runge-Kutta methods applied to fully implicit differential-algebraic equations of index 1 A Kværnø Mathematics of computation 54 (190), 583-625, 1990 | 20 | 1990 |
A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise D Küpper, A Kværnø, A Rößler BIT Numerical Mathematics 52, 437-455, 2012 | 19 | 2012 |
A Time-Reversible, Regularized, Switching Integrator for the N-Body Problem A Kvaerno, B Leimkuhler SIAM Journal on Scientific Computing 22 (3), 1016-1035, 2000 | 19 | 2000 |
An analysis of the order of Runge-Kutta methods that use an iterative scheme to compute their internal stage values KR Jackson, A Kværnø, SP Nørsett BIT Numerical Mathematics 36 (4), 713-765, 1996 | 18 | 1996 |
Runge–Kutta Lawson schemes for stochastic differential equations K Debrabant, A Kværnø, NC Mattsson BIT Numerical Mathematics 61, 381-409, 2021 | 14 | 2021 |
Composition of stochastic B-series with applications to implicit Taylor methods K Debrabant, A Kværnø Applied numerical mathematics 61 (4), 501-511, 2011 | 13 | 2011 |
General order conditions for stochastic partitioned Runge–Kutta methods S Anmarkrud, K Debrabant, A Kværnø BIT Numerical Mathematics 58, 257-280, 2018 | 10 | 2018 |
Cheap arbitrary high order methods for single integrand SDEs K Debrabant, A Kværnø BIT Numerical Mathematics 57, 153-168, 2017 | 10 | 2017 |
Numerical modeling of aquifer thermal energy efficiency under regional groundwater flow: a case study at Oslo Airport ZK Birhanu, NO Kitterød, HE Krogstad, A Kværnø Hydrology Research 46 (5), 721-734, 2015 | 9 | 2015 |
Positivity preserving discretization of time dependent semiconductor drift–diffusion equations M Brunk, A Kværnø Applied Numerical Mathematics 62 (10), 1289-1301, 2012 | 8 | 2012 |
Stochastic Taylor expansions: Weight functions of B-series expressed as multiple integrals K Debrabant, A Kværn⊘ Stochastic analysis and applications 28 (2), 293-302, 2010 | 8 | 2010 |