Identifying key factors for improving ICA‐based decomposition of EEG data in mobile and stationary experiments M Klug, K Gramann European Journal of Neuroscience 54 (12), 8406-8420, 2021 | 184 | 2021 |
Human cortical dynamics during full-body heading changes K Gramann, FU Hohlefeld, L Gehrke, M Klug Scientific reports 11 (1), 1-12, 2021 | 63* | 2021 |
MoBI—Mobile brain/body imaging E Jungnickel, L Gehrke, M Klug, K Gramann Neuroergonomics, 59-63, 2019 | 55* | 2019 |
Zapline‐plus: A Zapline extension for automatic and adaptive removal of frequency‐specific noise artifacts in M/EEG M Klug, NA Kloosterman Human Brain Mapping 43 (9), 2743-2758, 2022 | 46 | 2022 |
Mobile brain/body imaging of landmark‐based navigation with high‐density EEG A Delaux, JB de Saint Aubert, S Ramanoël, M Bécu, L Gehrke, M Klug, ... European Journal of Neuroscience 54 (12), 8256-8282, 2021 | 40 | 2021 |
The BeMoBIL Pipeline for automated analyses of multimodal mobile brain and body imaging data M Klug, S Jeung, A Wunderlich, L Gehrke, J Protzak, Z Djebbara, ... BioRxiv, 2022.09. 29.510051, 2022 | 31 | 2022 |
Neural sources of prediction errors detect unrealistic VR interactions L Gehrke, P Lopes, M Klug, S Akman, K Gramann Journal of neural engineering 19 (3), 036002, 2022 | 24 | 2022 |
A Bayesian framework for unifying data cleaning, source separation and imaging of electroencephalographic signals A Ojeda, M Klug, K Kreutz-Delgado, K Gramann, J Mishra bioRxiv, 559450, 2019 | 17 | 2019 |
Emotion-based human-robot-interaction M Klug, A Zell 2013 IEEE 9th International Conference on Computational Cybernetics (ICCC …, 2013 | 16 | 2013 |
The BeMoBIL Pipeline—Facilitating Mobile Brain/Body Imaging (MoBI) Data Analysis in MATLAB M Klug, L Gehrke, FU Hohlefeld, K Gramann Proceedings of the 3rd International Mobile Brain/Body Imaging Conference …, 2018 | 11* | 2018 |
HArtMuT—Modeling eye and muscle contributors in neuroelectric imaging N Harmening, M Klug, K Gramann, D Miklody Journal of Neural Engineering 19 (6), 066041, 2022 | 9 | 2022 |
No need for extensive artifact rejection for ICA-A multi-study evaluation on stationary and mobile EEG datasets M Klug, T Berg, K Gramann bioRxiv, 2022.09. 13.507772, 2022 | 2 | 2022 |
Real Virtual Magic–Modifying a VR game with a BCI to enhance immersion M Klug Neuroadaptive Technolgies 2022 Conference Proceedings, 27-28, 2022 | 1 | 2022 |
The Relationship Between Resting Frontal EEG Asymmetry and Mental Well-Being M Klug Eberhard Karls Universitat Tubingen, 2016 | 1 | 2016 |
Optimizing EEG ICA decomposition with data cleaning in stationary and mobile experiments M Klug, T Berg, K Gramann Scientific Reports 14 (1), 14119, 2024 | | 2024 |
Advancing passive BCIs: a feasibility study of two temporal derivative features and effect size-based feature selection in continuous online EEG-based machine error detection Y Pan, TO Zander, M Klug Frontiers in Neuroergonomics 5, 1346791, 2024 | | 2024 |
Methodological considerations and advancements of mobile brain/body imaging data analysis MS Klug PQDT-Global, 2023 | | 2023 |
Mobile Brain/Body Imaging Data Heading Computation K Gramann, F Hohlefeld, L Gehrke, M Klug | | 2020 |