A proof of Dejean’s conjecture J Currie, N Rampersad Mathematics of computation 80 (274), 1063-1070, 2011 | 110 | 2011 |
The metric dimension and metric independence of a graph J Currie, OR Oellerman The Charles Babbage Research Centre, 2001 | 110 | 2001 |
There are ternary circular square-free words of length n for n≥ 18 JD Currie The Electronic Journal of Combinatorics, 2002 | 94 | 2002 |
Pattern avoidance: themes and variations JD Currie Theoretical Computer Science 339 (1), 7-18, 2005 | 82 | 2005 |
Open problems in pattern avoidance J Currie The American mathematical monthly 100 (8), 790-793, 1993 | 76 | 1993 |
Dejean’s conjecture and Sturmian words M Mohammad-Noori, JD Currie European Journal of Combinatorics 28 (3), 876-890, 2007 | 72 | 2007 |
Avoiding three consecutive blocks of the same size and same sum J Cassaigne, JD Currie, L Schaeffer, J Shallit Journal of the ACM (JACM) 61 (2), 1-17, 2014 | 47 | 2014 |
Extremal infinite overlap-free binary words JP Allouche, J Currie, J Shallit the electronic journal of combinatorics, R27-R27, 1998 | 42 | 1998 |
Least periods of factors of infinite words JD Currie, K Saari RAIRO-Theoretical Informatics and Applications 43 (1), 165-178, 2009 | 40 | 2009 |
Dejean's conjecture holds for n≥ 27 J Currie, N Rampersad RAIRO-Theoretical Informatics and Applications 43 (4), 775-778, 2009 | 35 | 2009 |
Non-repetitive tilings JD Currie, J Simpson the electronic journal of combinatorics, R28-R28, 2002 | 28 | 2002 |
The number of ternary words avoiding abelian cubes grows exponentially. A Aberkane, JD Currie, N Rampersad Journal of Integer Sequences [electronic only] 7 (2), currie18. pdf, 2004 | 27 | 2004 |
A cyclic binary morphism avoiding abelian fourth powers JD Currie, A Aberkane Theoretical Computer Science 410 (1), 44-52, 2009 | 25 | 2009 |
Circular words avoiding patterns JD Currie, DS Fitzpatrick Developments in Language Theory: 6th International Conference, DLT 2002 …, 2003 | 24 | 2003 |
Avoiding patterns in the abelian sense J Currie, V Linek Canadian Journal of Mathematics 53 (4), 696-714, 2001 | 24 | 2001 |
Abelian Complexity of Fixed Point of Morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 11 F Blanchet-Sadri, JD Currie, N Rampersad, N Fox INTEGERS 14, A11, 2014 | 22 | 2014 |
The number of binary words avoiding abelian fourth powers grows exponentially JD Currie Theoretical computer science 319 (1-3), 441-446, 2004 | 22 | 2004 |
Fixed points avoiding Abelian k-powers JD Currie, N Rampersad Journal of Combinatorial Theory, Series A 119 (5), 942-948, 2012 | 21 | 2012 |
Long binary patterns are Abelian 2-avoidable JD Currie, TI Visentin Theoretical Computer Science 409 (3), 432-437, 2008 | 21 | 2008 |
Words strongly avoiding fractional powers J Cassaigne, JD Currie European Journal of Combinatorics 20 (8), 725-737, 1999 | 21 | 1999 |