TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks T Czempiel, M Paschali, M Keicher, W Simson, H Feussner, ST Kim, ... MICCAI, 343-352, 2020 | 161 | 2020 |
One small step for generative ai, one giant leap for agi: A complete survey on chatgpt in aigc era C Zhang, C Zhang, C Li, Y Qiao, S Zheng, SK Dam, M Zhang, JU Kim, ... arXiv preprint arXiv:2304.06488, 2023 | 130 | 2023 |
OperA: Attention-Regularized Transformers for Surgical Phase Recognition T Czempiel, M Paschali, D Ostler, ST Kim, B Busam, N Navab MICCAI, 604–614, 2021 | 86 | 2021 |
Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis DH Kim, ST Kim, YM Ro ICASSP, 927-931, 2016 | 63 | 2016 |
Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis H Lee, ST Kim, YM Ro MICCAI Workshop, 21-29, 2019 | 52 | 2019 |
Multimodal facial biometrics recognition: Dual-stream convolutional neural networks with multi-feature fusion layers LCO Tiong, ST Kim, YM Ro Image and Vision Computing, 103977, 2020 | 43 | 2020 |
Implementation of multimodal biometric recognition via multi-feature deep learning networks and feature fusion LCO Tiong, ST Kim, YM Ro Multimedia Tools and Applications 78, 22743-22772, 2019 | 43 | 2019 |
Neural response interpretation through the lens of critical pathways A Khakzar, S Baselizadeh, S Khanduja, C Rupprecht, ST Kim, N Navab CVPR, 13528-13538, 2021 | 42* | 2021 |
Force-ultrasound fusion: Bringing spine robotic-us to the next “level” M Tirindelli, M Victorova, J Esteban, ST Kim, D Navarro-Alarcon, ... IEEE Robotics and Automation Letters 5 (4), 5661-5668, 2020 | 37 | 2020 |
ICADx: interpretable computer aided diagnosis of breast masses ST Kim, H Lee, HG Kim, YM Ro Medical Imaging 2018: Computer-Aided Diagnosis 10575, 450-459, 2018 | 33 | 2018 |
Fine-grained neural network explanation by identifying input features with predictive information Y Zhang, A Khakzar, Y Li, A Farshad, ST Kim, N Navab NeurIPS 34, 20040-20051, 2021 | 28 | 2021 |
Visually interpretable deep network for diagnosis of breast masses on mammograms ST Kim, JH Lee, H Lee, YM Ro Physics in Medicine & Biology 63 (23), 235025, 2018 | 26 | 2018 |
Self-Supervised Out-of-Distribution Detection in Brain CT Scans AR Venkatakrishnan, ST Kim, R Eisawy, F Pfister, N Navab NeurIPS Workshop, 2020 | 22 | 2020 |
Latent feature representation with depth directional long-term recurrent learning for breast masses in digital breast tomosynthesis DH Kim, ST Kim, JM Chang, YM Ro Physics in Medicine & Biology 62 (3), 1009, 2017 | 22 | 2017 |
A deep facial landmarks detection with facial contour and facial components constraint WJ Baddar, J Son, DH Kim, ST Kim, YM Ro 2016 IEEE International Conference on Image Processing (ICIP), 3209-3213, 2016 | 22 | 2016 |
LINe: Out-of-Distribution Detection by Leveraging Important Neurons YH Ahn, GM Park, ST Kim CVPR, 19852-19862, 2023 | 21 | 2023 |
Spatio-temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation S Denner, A Khakzar, M Sajid, M Saleh, Z Spiclin, ST Kim, N Navab MICCAI Workshop, 2020 | 21 | 2020 |
Lightweight and effective facial landmark detection using adversarial learning with face geometric map generative network HJ Lee, ST Kim, H Lee, YM Ro IEEE Transactions on Circuits and Systems for Video Technology 30 (3), 771-780, 2019 | 19 | 2019 |
Attended Relation Feature Representation of Facial Dynamics for Facial Authentication ST Kim, YM Ro IEEE Transactions on Information Forensics and Security 14 (7), 1768-1778, 2019 | 18 | 2019 |
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models A Khakzar, S Musatian, J Buchberger, IV Quiroz, N Pinger, S Baselizadeh, ... MICCAI, 2021 | 17 | 2021 |