关注
Daniel Lehmberg
Daniel Lehmberg
在 tum.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
NOMAD: A distributed web-based platform for managing materials science research data
M Scheidgen, L Himanen, AN Ladines, D Sikter, M Nakhaee, Á Fekete, ...
Journal of Open Source Software 8 (90), 5388, 2023
372023
Walking on stairs: Experiment and model
G Köster, D Lehmberg, A Kneidl
Physical Review E 100 (2), 022310, 2019
232019
Double diffusion maps and their latent harmonics for scientific computations in latent space
N Evangelou, F Dietrich, E Chiavazzo, D Lehmberg, M Meila, ...
Journal of Computational Physics 485, 112072, 2023
202023
datafold: data-driven models for point clouds and time series on manifolds
D Lehmberg, F Dietrich, G Köster, HJ Bungartz
Journal of Open Source Software 5 (51), 2283, 2020
162020
Is slowing down enough to model movement on stairs?
G Köster, D Lehmberg, F Dietrich
Traffic and Granular Flow'15, 35-42, 2016
152016
Modeling Melburnians—Using the Koopman operator to gain insight into crowd dynamics
D Lehmberg, F Dietrich, G Köster
Transportation Research Part C: Emerging Technologies 133, 103437, 2021
102021
Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator
IK Gallos, D Lehmberg, F Dietrich, C Siettos
Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (1), 2024
62024
Traffic and Granular Flow’15
G Köster, D Lehmberg, F Dietrich
Springer, 2016
62016
Can we learn where people go?
M Gödel, G Köster, D Lehmberg, M Gruber, A Kneidl, F Sesser
arXiv preprint arXiv:1812.03719, 2018
52018
Exploring Koopman operator based surrogate models—accelerating the analysis of critical pedestrian densities
D Lehmberg, F Dietrich, IG Kevrekidis, HJ Bungartz, G Köster
Traffic and Granular Flow 2019, 149-157, 2020
32020
Toward learning dynamic origin-destination matrices from crowd density heatmaps
M Gödel, D Lehmberg, R Brydon, E Bosina, G Köster
Journal of Statistical Mechanics: Theory and Experiment 2022 (5), 053401, 2022
12022
Operator-informed machine learning: Extracting geometry and dynamics from time series data
D Lehmberg
Technische Universität München, 2022
12022
Scientific Computation in the Latent Space through Manifold Learning
N Evangelou, F Dietrich, D Lehmberg, G Psarellis, E Chiavazzo, ...
2020 Virtual AIChE Annual Meeting, 2020
2020
Estimating Potential Power Supply of an Offshore Wind Farm using Machine Learning
D Lehmberg
2018
系统目前无法执行此操作,请稍后再试。
文章 1–14