关注
Susan Gruber
Susan Gruber
TL Revolution and Putnam Data Sciences
在 TLrevolution.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014
C Rhee, R Dantes, L Epstein, DJ Murphy, CW Seymour, TJ Iwashyna, ...
Jama 318 (13), 1241-1249, 2017
16502017
Diagnosing and responding to violations in the positivity assumption
ML Petersen, KE Porter, S Gruber, Y Wang, MJ Van Der Laan
Statistical methods in medical research 21 (1), 31-54, 2012
6132012
tmle: an R package for targeted maximum likelihood estimation
S Gruber, M Van Der Laan
Journal of Statistical Software 51, 1-35, 2012
2372012
Collaborative double robust targeted maximum likelihood estimation
MJ van der Laan, S Gruber
The international journal of biostatistics 6 (1), 2010
2352010
Targeted minimum loss based estimation of causal effects of multiple time point interventions
MJ van der Laan, S Gruber
The international journal of biostatistics 8 (1), 2012
2022012
A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome
S Gruber, MJ van der Laan
The International Journal of Biostatistics 6 (1), 2010
1842010
Targeted maximum likelihood estimation for dynamic and static longitudinal marginal structural working models
M Petersen, J Schwab, S Gruber, N Blaser, M Schomaker, ...
Journal of causal inference 2 (2), 147-185, 2014
1742014
The relative performance of targeted maximum likelihood estimators
KE Porter, S Gruber, MJ Van Der Laan, JS Sekhon
The international journal of biostatistics 7 (1), 0000102202155746791308, 2011
1372011
Development and validation of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: a modelling study
DS Krakower, S Gruber, K Hsu, JT Menchaca, JC Maro, BA Kruskal, ...
The Lancet HIV 6 (10), e696-e704, 2019
1132019
An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
S Gruber, MJ van der Laan
The International Journal of Biostatistics 6 (1), 2010
1102010
Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets
S Gruber, RW Logan, I Jarrín, S Monge, MA Hernán
Statistics in medicine 34 (1), 106-117, 2015
782015
Relative performance of propensity score matching strategies for subgroup analyses
SV Wang, Y Jin, B Fireman, S Gruber, M He, R Wyss, HJ Shin, Y Ma, ...
American journal of epidemiology 187 (8), 1799-1807, 2018
772018
One-step targeted minimum loss-based estimation based on universal least favorable one-dimensional submodels
M van der Laan, S Gruber
The international journal of biostatistics 12 (1), 351-378, 2016
682016
Empirical performance of a new user cohort method: lessons for developing a risk identification and analysis system
PB Ryan, MJ Schuemie, S Gruber, I Zorych, D Madigan
Drug safety 36, 59-72, 2013
672013
Targeted maximum likelihood estimation: A gentle introduction
S Gruber, MJ Van Der Laan
bepress, 2009
652009
Application of machine-learning to predict early spontaneous preterm birth among nulliparous non-Hispanic black and white women
A Weber, GL Darmstadt, S Gruber, ME Foeller, SL Carmichael, ...
Annals of epidemiology 28 (11), 783-789. e1, 2018
642018
Practical considerations for specifying a super learner
RV Phillips, MJ Van Der Laan, H Lee, S Gruber
International Journal of Epidemiology 52 (4), 1276-1285, 2023
542023
Variable selection for confounder control, flexible modeling and collaborative targeted minimum loss-based estimation in causal inference
ME Schnitzer, JJ Lok, S Gruber
The international journal of biostatistics 12 (1), 97-115, 2016
512016
Targeted minimum loss based estimation of an intervention specific mean outcome
MJ van der Laan, S Gruber
bepress, 2011
482011
Ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings
M Klompas, L Li, JT Menchaca, S Gruber, ...
Clinical Infectious Diseases 64 (7), 870-876, 2017
452017
系统目前无法执行此操作,请稍后再试。
文章 1–20