Boundary stabilization of a 1-D wave equation with in-domain antidamping A Smyshlyaev, E Cerpa, M Krstic SIAM journal on control and optimization 48 (6), 4014-4031, 2010 | 219 | 2010 |
Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain E Cerpa, E Crépeau Annales de l'Institut Henri Poincaré C, Analyse non linéaire 26 (2), 457-475, 2009 | 139 | 2009 |
Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain E Cerpa SIAM Journal on Control and Optimization 46 (3), 877-899, 2007 | 129 | 2007 |
Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition E Cerpa, JM Coron IEEE Transactions on Automatic Control 58 (7), 1688-1695, 2013 | 126 | 2013 |
Control of a Korteweg-de Vries equation: a tutorial E Cerpa Mathematical Control and Related Fields 4 (1), 45-99, 2014 | 103 | 2014 |
Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation E Cerpa, A Mercado Journal of Differential Equations 250 (4), 2024-2044, 2011 | 92 | 2011 |
Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation E Cerpa Commun. Pure Appl. Anal 9 (1), 91-102, 2010 | 73 | 2010 |
Rapid exponential stabilization for a linear Korteweg-de Vries equation E Cerpa, E Crépeau Discrete Contin. Dyn. Syst. Ser. B 11 (3), 655-668, 2009 | 59 | 2009 |
Global stabilization of a Korteweg-de Vries equation with saturating distributed control S Marx, E Cerpa, C Prieur, V Andrieu SIAM J. Control Optim. 55 (3), 1452-1480, 2017 | 55 | 2017 |
Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation L Baudouin, E Cerpa, E Crépeau, A Mercado Applicable Analysis 92 (10), 2084-2102, 2013 | 50 | 2013 |
On the control of the linear Kuramoto-Sivashinsky equation E Cerpa, P Guzmán, A Mercado ESAIM Control Optim. Calc. Var. 23 (1), 165-194, 2017 | 47 | 2017 |
Output feedback stabilization of the Korteweg-de Vries equation S Marx, E Cerpa Automatica 87 (1), 210-217, 2018 | 46 | 2018 |
Boundary Controllability of the Korteweg-de Vries Equation on a Bounded Domain E Cerpa, I Rivas, BY Zhang SIAM Journal on Control and Optimization 51 (4), 2976-3010, 2013 | 38 | 2013 |
Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control P Guzmán, S Marx, E Cerpa IFAC Workshop on Control of Systems Governed by Partial Differential …, 2019 | 36 | 2019 |
On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network E Cerpa, E Crépeau, C Moreno IMA Journal of Math. Control and Information 37, 226-240, 2020 | 31 | 2020 |
Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation N Carreno, E Cerpa J. Math. Pures Appl. 106 (4), 670-694, 2016 | 31 | 2016 |
Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control E Cerpa, A Mercado, AF Pazoto SIAM J. Control Optim. 53 (3), 1543-1568, 2015 | 30 | 2015 |
Stabilization of a linear Korteweg-de Vries equation with a saturated internal control S Marx, E Cerpa, C Prieur, V Andrieu 2015 European Control Conference (ECC), 867-872, 2015 | 29 | 2015 |
A NOTE ON THE PAPER" ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG–DE VRIES EQUATIONS" E Cerpa, AF Pazoto Communications in Contemporary Mathematics 13 (01), 183-189, 2011 | 29 | 2011 |
Backstepping control of a wave PDE with unstable source terms and dynamic boundary C Roman, D Bresch-Pietri, E Cerpa, C Prieur, O Sename IEEE Control Systems Letters 2 (3), 459-464, 2018 | 25 | 2018 |