关注
Edward Kim
Edward Kim
Cohere AI
在 cohere.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Materials synthesis insights from scientific literature via text extraction and machine learning
E Kim, K Huang, A Saunders, A McCallum, G Ceder, E Olivetti
Chemistry of Materials 29 (21), 9436-9444, 2017
4312017
A machine learning approach to zeolite synthesis enabled by automatic literature data extraction
Z Jensen, E Kim, S Kwon, TZH Gani, Y Román-Leshkov, M Moliner, ...
ACS central science 5 (5), 892-899, 2019
2192019
Data-driven materials research enabled by natural language processing and information extraction
EA Olivetti, JM Cole, E Kim, O Kononova, G Ceder, TYJ Han, ...
Applied Physics Reviews 7 (4), 2020
2062020
Machine-learned and codified synthesis parameters of oxide materials
E Kim, K Huang, A Tomala, S Matthews, E Strubell, A Saunders, ...
Scientific data 4 (1), 1-9, 2017
1722017
Virtual screening of inorganic materials synthesis parameters with deep learning
E Kim, K Huang, S Jegelka, E Olivetti
npj Computational Materials 3 (1), 53, 2017
1372017
Inorganic materials synthesis planning with literature-trained neural networks
E Kim, Z Jensen, A van Grootel, K Huang, M Staib, S Mysore, HS Chang, ...
Journal of chemical information and modeling 60 (3), 1194-1201, 2020
1242020
The materials science procedural text corpus: Annotating materials synthesis procedures with shallow semantic structures
S Mysore, Z Jensen, E Kim, K Huang, HS Chang, E Strubell, J Flanigan, ...
arXiv preprint arXiv:1905.06939, 2019
1112019
Distilling a materials synthesis ontology
E Kim, K Huang, O Kononova, G Ceder, E Olivetti
Matter 1 (1), 8-12, 2019
472019
Automatically extracting action graphs from materials science synthesis procedures
S Mysore, E Kim, E Strubell, A Liu, HS Chang, S Kompella, K Huang, ...
arXiv preprint arXiv:1711.06872, 2017
442017
Machine-learned metrics for predicting the likelihood of success in materials discovery
Y Kim, E Kim, E Antono, B Meredig, J Ling
arXiv preprint arXiv:1911.11201, 2019
372019
Using machine learning to explore formulations recipes with new ingredients
ML Hutchinson, ES Kim, RM Latture, SP Paradiso, JB Ling
US Patent 10,984,145, 2021
122021
Elo uncovered: Robustness and best practices in language model evaluation
M Boubdir, E Kim, B Ermis, S Hooker, M Fadaee
arXiv preprint arXiv:2311.17295, 2023
92023
Fabrication and characterization of thin film nickel hydroxide electrodes for micropower applications
H Falahati, E Kim, DPJ Barz
ACS Applied Materials & Interfaces 7 (23), 12797-12808, 2015
92015
Design space visualization for guiding investments in biodegradable and sustainably sourced materials
JS Peerless, E Sevgen, SD Edkins, J Koeller, E Kim, Y Kim, A Garg, ...
MRS Communications, 1-7, 2020
72020
Germanene-like defects in amorphous germanium revealed by three-dimensional visualization of high-resolution pair-distribution functions
B Tomberli, A Rahemtulla, E Kim, S Roorda, S Kycia
Physical Review B 92 (6), 064204, 2015
52015
Multiple scattering Debye-Waller factors for arsenate
E Kim, N Chen, Z Arthur, J Warner, GP Demopoulos, JW Rowson, ...
Journal of Physics: Conference Series 430 (1), 012086, 2013
52013
Toward Predictive Chemical Deformulation Enabled by Deep Generative Neural Networks
E Sevgen, E Kim, B Folie, V Rivera, J Koeller, E Rosenthal, A Jacobs, ...
Industrial & Engineering Chemistry Research 60 (39), 14176-14184, 2021
42021
XAFS study of arsenical nickel hydroxide
N Chen, E Kim, Z Arthur, R Daenzer, J Warner, GP Demopoulos, Y Joly, ...
Journal of Physics: Conference Series 430 (1), 012092, 2013
42013
Which Prompts Make The Difference? Data Prioritization For Efficient Human LLM Evaluation
M Boubdir, E Kim, B Ermis, M Fadaee, S Hooker
arXiv preprint arXiv:2310.14424, 2023
32023
Predictive design space metrics for materials development
Y Kim, EMT Antono, ES Kim, BW Meredig, JB Ling
US Patent 10,657,300, 2020
32020
系统目前无法执行此操作,请稍后再试。
文章 1–20