受强制性开放获取政策约束的文章 - Nicola Rares Franco了解详情
可在其他位置公开访问的文章:7 篇
A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort
MC Massi, F Gasperoni, F Ieva, AM Paganoni, P Zunino, A Manzoni, ...
Frontiers in oncology 10, 541281, 2020
强制性开放获取政策: US National Institutes of Health, Cancer Research UK, UK Medical Research …
Approximation bounds for convolutional neural networks in operator learning
NR Franco, S Fresca, A Manzoni, P Zunino
Neural Networks 161, 129-141, 2023
强制性开放获取政策: Fondazione Cariplo
Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity
NR Franco, MC Massi, F Ieva, A Manzoni, AM Paganoni, P Zunino, ...
Radiotherapy and Oncology 159, 241-248, 2021
强制性开放获取政策: US National Institutes of Health, National Institute of Health and Medical …
Mesh-Informed Neural Networks for Operator Learning in Finite Element Spaces
NR Franco, A Manzoni, P Zunino
Journal of Scientific Computing 97 (35), 2023
强制性开放获取政策: European Commission
Error estimates for POD-DL-ROMs: a deep learning framework for reduced order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decomposition
S Brivio, S Fresca, NR Franco, A Manzoni
Advances in Computational Mathematics 50 (3), 33, 2024
强制性开放获取政策: UK Engineering and Physical Sciences Research Council
Learning high-order interactions for polygenic risk prediction
MC Massi, NR Franco, A Manzoni, AM Paganoni, HA Park, M Hoffmeister, ...
Plos one 18 (2), e0281618, 2023
强制性开放获取政策: German Research Foundation, Federal Ministry of Education and Research, Germany
On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields
NR Franco, D Fraulin, A Manzoni, P Zunino
Advances in Computational Mathematics 50 (5), 96, 2024
强制性开放获取政策: European Commission
出版信息和资助信息由计算机程序自动确定