Graph neural networks for prediction of fuel ignition quality AM Schweidtmann, JG Rittig, A König, M Grohe, A Mitsos, M Dahmen Energy & Fuels 34 (9), 11395-11407, 2020 | 127 | 2020 |
Summit: benchmarking machine learning methods for reaction optimisation KC Felton, JG Rittig, AA Lapkin Chemistry‐Methods 1 (2), 116-122, 2021 | 89 | 2021 |
Graph neural networks for temperature-dependent activity coefficient prediction of solutes in ionic liquids JG Rittig, KB Hicham, AM Schweidtmann, M Dahmen, A Mitsos Computers & Chemical Engineering 171, 108153, 2023 | 41 | 2023 |
Physical pooling functions in graph neural networks for molecular property prediction AM Schweidtmann, JG Rittig, JM Weber, M Grohe, M Dahmen, ... Computers & Chemical Engineering 172, 108202, 2023 | 26 | 2023 |
Graph machine learning for design of high‐octane fuels JG Rittig, M Ritzert, AM Schweidtmann, S Winkler, JM Weber, P Morsch, ... AIChE Journal 69 (4), e17971, 2023 | 21 | 2023 |
Designing production-optimal alternative fuels for conventional, flexible-fuel, and ultra-high efficiency engines A König, M Siska, AM Schweidtmann, JG Rittig, J Viell, A Mitsos, ... Chemical Engineering Science 237, 116562, 2021 | 21 | 2021 |
Graph Neural Networks for the Prediction of Molecular Structure–Property Relationships JG Rittig, Q Gao, M Dahmen, A Mitsos, AM Schweidtmann | 17 | 2023 |
Gibbs–Duhem-informed neural networks for binary activity coefficient prediction JG Rittig, KC Felton, AA Lapkin, A Mitsos Digital Discovery 2 (6), 1752-1767, 2023 | 16 | 2023 |
Molecular Design of Fuels for Maximum Spark-Ignition Engine Efficiency by Combining Predictive Thermodynamics and Machine Learning L Fleitmann, P Ackermann, J Schilling, J Kleinekorte, JG Rittig, ... Energy & Fuels 37 (3), 2213-2229, 2023 | 12 | 2023 |
Graph neural networks for surfactant multi-property prediction C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos Colloids and Surfaces A: Physicochemical and Engineering Aspects 694, 134133, 2024 | 5 | 2024 |
ML-SAFT: a machine learning framework for PCP-SAFT parameter prediction KC Felton, L Raßpe-Lange, JG Rittig, K Leonhard, A Mitsos, ... Chemical Engineering Journal 492, 151999, 2024 | 5 | 2024 |
Thermodynamics-consistent graph neural networks JG Rittig, A Mitsos Chemical Science 15 (44), 18504-18512, 2024 | 4 | 2024 |
Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos Journal of Chemical Theory and Computation 20 (13), 5695-5707, 2024 | 2 | 2024 |
GraphXForm: Graph transformer for computer-aided molecular design with application to extraction J Pirnay, JG Rittig, AB Wolf, M Grohe, J Burger, A Mitsos, DG Grimm arXiv preprint arXiv:2411.01667, 2024 | 1 | 2024 |
Multi-fidelity graph neural networks for predicting toluene/water partition coefficients T Nevolianis, JG Rittig, A Mitsos, K Leonhard | 1 | 2024 |
Predicting the Temperature-Dependent CMC of Surfactant Mixtures with Graph Neural Networks C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos arXiv preprint arXiv:2411.02224, 2024 | | 2024 |
Thermodynamics-Informed Graph Neural Networks for Predicting Molecular and Mixture Properties JG Rittig, K Felton, AA Lapkin, A Mitsos 2024 AIChE Annual Meeting, 2024 | | 2024 |
Fuel Ignition Delay Maps for Molecularly Controlled Combustion M Neumann, JG Rittig, AB Letaief, C Honecker, P Ackermann, A Mitsos, ... Energy & Fuels 38 (14), 13264-13277, 2024 | | 2024 |
Parameter estimation and dynamic optimization of an industrial fed-batch reactor JG Rittig, JC Schulze, L Henrichfreise, S Recker, R Feller, A Mitsos, ... Computer Aided Chemical Engineering 52, 1175-1180, 2023 | | 2023 |
Computer-Aided Fuel Design with Generative Graph Machine Learning JG Rittig, M Ritzert, AM Schweidtmann, S Winkler, JM Weber, P Morsch, ... 2022 AIChE Annual Meeting, 2022 | | 2022 |