关注
Tingchun Wang
Tingchun Wang
School of Mathematics and Statistics, Nanjing University of Information Science and Technology
在 nuist.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions
T Wang, B Guo, Q Xu
Journal of Computational Physics 243, 382-399, 2013
1922013
Conservative difference methods for the Klein–Gordon–Zakharov equations
T Wang, J Chen, L Zhang
Journal of Computational and Applied Mathematics 205 (1), 430-452, 2007
782007
Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator
T Wang, L Zhang
Applied Mathematics and Computation 182 (2), 1780-1794, 2006
782006
New conservative difference schemes for a coupled nonlinear Schrödinger system
T Wang, B Guo, L Zhang
Applied Mathematics and Computation 217 (4), 1604-1619, 2010
762010
Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation
T Wang, B Guo
Numerical Methods for Partial Differential Equations 27 (5), 1340-1363, 2011
722011
Conservative schemes for the symmetric regularized long wave equations
T Wang, L Zhang, F Chen
Applied Mathematics and Computation 190 (2), 1063-1080, 2007
682007
Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension
T Wang, B Guo
Sci. Sin. Math 41 (3), 207-233, 2011
672011
Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation
T Wang
Journal of Mathematical Analysis and Applications 412 (1), 155-167, 2014
572014
Optimal point-wise error estimate of a compact difference scheme for the coupled Gross–Pitaevskii equations in one dimension
T Wang
Journal of Scientific Computing 59 (1), 158-186, 2014
562014
Unconditional and optimal H 2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high …
T Wang, X Zhao, J Jiang
Advances in Computational Mathematics 44, 477-503, 2018
542018
Optimal l error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions
TC Wang, XF Zhao
Science China Mathematics 57, 2189-2214, 2014
452014
Convergence analysis of a linearized Crank–Nicolson scheme for the two‐dimensional complex Ginzburg–Landau equation
Y Zhang, Z Sun, T Wang
Numerical Methods for Partial Differential Equations 29 (5), 1487-1503, 2013
452013
Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrödinger equations
T Wang
Journal of computational and applied mathematics 235 (14), 4237-4250, 2011
372011
Point-wise errors of two conservative difference schemes for the Klein–Gordon–Schrödinger equation
T Wang, Y Jiang
Communications in Nonlinear Science and Numerical Simulation 17 (12), 4565-4575, 2012
362012
A robust semi-explicit difference scheme for the Kuramoto–Tsuzuki equation
T Wang, B Guo
Journal of Computational and Applied Mathematics 233 (4), 878-888, 2009
342009
Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system
T Wang, T Nie, L Zhang
Journal of computational and applied mathematics 231 (2), 745-759, 2009
302009
Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation
T Wang, J Wang, B Guo
Journal of Computational Physics 404, 109116, 2020
242020
Uniform point-wise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrödinger equation perturbed by wave operator
T Wang
Journal of Mathematical Analysis and Applications 422 (1), 286-308, 2015
242015
对称正则长波方程的拟紧致守恒差分逼近
王廷春, 张鲁明
数学物理学报: A 辑 26 (B12), 1039-1046, 2006
242006
Convergence of an eighth‐order compact difference scheme for the nonlinear Schrödinger equation
T Wang
Advances in Numerical Analysis 2012 (1), 913429, 2012
232012
系统目前无法执行此操作,请稍后再试。
文章 1–20