关注
Peter Zaspel
Peter Zaspel
在 uni-wuppertal.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited
P Zaspel, B Huang, H Harbrecht, OA von Lilienfeld
Journal of chemical theory and computation 15 (3), 1546-1559, 2018
1012018
A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations
M Griebel, P Zaspel
Computer Science-Research and Development 25, 65-73, 2010
962010
Solving incompressible two-phase flows on multi-GPU clusters
P Zaspel, M Griebel
Computers & Fluids 80, 356-364, 2013
882013
Massively parallel fluid simulations on Amazon's HPC cloud
P Zaspel, M Griebel
2011 First International Symposium on Network Cloud Computing and …, 2011
422011
EXAHD: an exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and beyond
D Pflüger, HJ Bungartz, M Griebel, F Jenko, T Dannert, M Heene, ...
Euro-Par 2014: Parallel Processing Workshops: Euro-Par 2014 International …, 2014
232014
Algorithmic Patterns for -Matrices on Many-Core Processors
P Zaspel
Journal of Scientific Computing 78 (2), 1174-1206, 2019
122019
Photorealistic visualization and fluid animation: coupling of Maya with a two-phase Navier-Stokes fluid solver
P Zaspel, M Griebel
Computing and visualization in science 14, 371-383, 2011
102011
Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration
H Harbrecht, JD Jakeman, P Zaspel
Universität Basel 2020 (05), 2020
72020
Solving incompressible two-phase flows on massively parallel multi-GPU clusters
P Zaspel, M Griebel
Computers and Fluids, Submitted: INS Preprint, 2011
72011
Optimized multifidelity machine learning for quantum chemistry
V Vinod, U Kleinekathöfer, P Zaspel
Machine Learning: Science and Technology 5 (1), 015054, 2024
62024
Multifidelity machine learning for molecular excitation energies
V Vinod, S Maity, P Zaspel, U Kleinekathöfer
Journal of Chemical Theory and Computation 19 (21), 7658-7670, 2023
62023
Uncertainty quantification and high performance computing (dagstuhl seminar 16372)
V Heuveline, M Schick, C Webster, P Zaspel
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2017
42017
Parallel RBF Kernel-Based Stochastic Collocation for Large-Scale Random PDEs
P Zaspel
Universitäts-und Landesbibliothek Bonn, 2015
42015
A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters
H Harbrecht, P Zaspel
arXiv preprint arXiv:1806.11558, 2018
32018
Weighted greedy-optimal design of computer experiments for kernel-based and Gaussian process model emulation and calibration
H Helmut, JD Jakeman, P Zaspel
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020
22020
Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations
M Griebel, C Rieger, P Zaspel
International Journal for Uncertainty Quantification 9 (5), 2019
22019
Analysis and parallelizationstrategies for Ruge-Stüben AMGon many-core processors
PE Zaspel
Universität Basel 2017 (06), 2017
22017
Subspace correction methods in algebraic multi-level frames
P Zaspel
Linear Algebra and its Applications 488, 505-521, 2016
22016
Zweiphasige Navier-Stokes Fluidsimulationen in Maya: Konfiguration, Visualisierung und Animation
P Zaspel
Diplomarbeit, Institut für Numerische Simulation Universität Bonn, 2009
22009
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
V Vinod, S Maity, P Zaspel, U Kleinekathöfer
arXiv preprint arXiv:2305.11292, 2023
12023
系统目前无法执行此操作,请稍后再试。
文章 1–20