关注
Thomas Gebhart
标题
引用次数
引用次数
年份
Sheaf Neural Networks
J Hansen, T Gebhart
NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020
362020
Characterizing the Shape of Activation Space in Deep Neural Networks
T Gebhart, P Schrater, A Hylton
2019 18th IEEE International Conference On Machine Learning And Applications …, 2019
32*2019
Adversary Detection in Neural Networks via Persistent Homology
T Gebhart, P Schrater
arXiv preprint arXiv:1711.10056, 2017
312017
Path homologies of deep feedforward networks
S Chowdhury, T Gebhart, S Huntsman, M Yutin
2019 18th IEEE International Conference On Machine Learning And Applications …, 2019
242019
A unified paths perspective for pruning at initialization
T Gebhart, U Saxena, P Schrater
arXiv preprint arXiv:2101.10552, 2021
142021
Go with the flow? A large-scale analysis of health care delivery networks in the United States using Hodge theory
T Gebhart, X Fu, RJ Funk
2021 IEEE International Conference on Big Data, 3812-3823, 2021
82021
The emergence of higher-order structure in scientific and technological knowledge networks
T Gebhart, RJ Funk
Academy of Management Proceedings 2023 (1), 12214, 2023
62023
Applying support-vector machine learning algorithms toward predicting host–guest interactions with cucurbit [7] uril
A Tabet, T Gebhart, G Wu, C Readman, MP Smela, VK Rana, C Baker, ...
Physical Chemistry Chemical Physics 22 (26), 14976-14982, 2020
42020
A mathematical framework for citation disruption
T Gebhart, R Funk
arXiv preprint arXiv:2308.16363, 2023
32023
Knowledge sheaves: A sheaf-theoretic framework for knowledge graph embedding
T Gebhart, J Hansen, P Schrater
International Conference on Artificial Intelligence and Statistics, 9094-9116, 2023
32023
Graph Convolutional Networks from the Perspective of Sheaves and the Neural Tangent Kernel
T Gebhart
ICML Topological, Algebraic and Geometric Learning Workshops 2022, 124-132, 2022
32022
Extending transductive knowledge graph embedding models for inductive logical relational inference
T Gebhart, J Cobb
arXiv preprint arXiv:2309.03773, 2023
12023
Disentangling signal and noise in neural responses through generative modeling
K Kay, JS Prince, T Gebhart, G Tuckute, J Zhou, T Naselaris, H Schutt
bioRxiv, 2024
2024
Sheaf Representation Learning
T Gebhart
University of Minnesota, 2023
2023
Cryptocurrency Competition and Dynamics
T Gebhart
Comparative Advantage 4, 14-23, 2016
2016
Sheaf Laplacians and Missing Data
J Cobb, T Gebhart
2024 Joint Mathematics Meetings (JMM 2024), 0
Inferring Interaction Kernels for Stochastic Agent-Based Opinion Dynamics
T Gebhart, L Huynh, V Modisette, W Thompson, M Tian, A Wiedemann, ...
2024 Joint Mathematics Meetings (JMM 2024), 0
系统目前无法执行此操作,请稍后再试。
文章 1–17