AI for experimental controls at jefferson lab T Jeske, D McSpadden, N Kalra, T Britton, N Jarvis, D Lawrence Journal of Instrumentation 17 (03), C03043, 2022 | 7 | 2022 |
Virginia judicial workload assessment report BJ Ostrom, M Kleiman, CG Lee, JDS Roth National Center for State Courts, 2013 | 5 | 2013 |
Artificial Intelligence for the Electron Ion Collider (AI4EIC) C Allaire, R Ammendola, EC Aschenauer, M Balandat, M Battaglieri, ... Computing and Software for Big Science 8 (1), 5, 2024 | 3 | 2024 |
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia D McSpadden, S Goldenberg, B Roy, M Schram, JL Goodall, H Richter Machine Learning with Applications 15, 100518, 2024 | 1 | 2024 |
Distributed Conditional GAN (discGAN) For Synthetic Healthcare Data Generation D Fuentes, D McSpadden, S Adewole arXiv preprint arXiv:2304.04290, 2023 | 1 | 2023 |
ML-based Calibration and Control of the GlueX Central Drift Chamber T Britton, M Goodrich, N Jarvis, T Jeske, N Kalra, D Lawrence, ... arXiv preprint arXiv:2403.13823, 2024 | | 2024 |
AI Assisted Experiment Control and Calibration T Britton, M Goodrich, N Jarvis, T Jeske, N Kalra, D Lawrence, ... arXiv preprint arXiv:2402.13261, 2024 | | 2024 |
AI4EIC Hackathon: PID with the ePIC dRICH C Fanelli, J Giroux, D McSpadden, K Rajput, K Suresh, E Cisbani, ... EPJ Web of Conferences 295, 08004, 2024 | | 2024 |
AI Driven Experiment Calibration and Control T Britton, C Bedwell, A Chawhan, J Crowe, N Jarvis, T Jeske, N Kalra, ... EPJ Web of Conferences 295, 02003, 2024 | | 2024 |
Application of LSTM and seq2seq LSTM surrogate models for forecasting multi-step-ahead nuisance flooding of flood-vulnerable streets in Norfolk, Virginia B Roy, JL Goodall, D McSpadden, S Goldenberg, M Schram AGU23, 2023 | | 2023 |
Uncertainty Quantified Machine Learning for Street Level Flooding Predictions in Norfolk, Virginia S Goldenberg, D McSpadden, B Roy, M Schram, JL Goodall, H Richter Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA …, 2023 | | 2023 |
Dataset for Investigating Anomalies in Compute Clusters D McSpadden, Y Alanazi, B Hess, L Hild, M Jones, Y Lub, A Mohammed, ... arXiv preprint arXiv:2311.16129, 2023 | | 2023 |
arXiv: Artificial Intelligence for the Electron Ion Collider (AI4EIC) C Allaire, R Ammendola, T Horn, C Pecar, C Dean, F Liu, P Karande, ... | | 2023 |
Using AI to predict calibration constants for the central drift chamber in GlueX at Jefferson Lab T Jeske, D McSpadden, N Kalra, T Britton, N Jarvis, D Lawrence Journal of Physics: Conference Series 2438 (1), 012132, 2023 | | 2023 |
Input data for LSTM and seq2seq LSTM surrogate models for multi-step-ahead street-scale flood forecasting in Norfolk, VA, HydroShare, http://www.hydroshare.org/resource … B Roy, S Goldenberg, D McSpadden HydroShare, https://www.hydroshare.org/resource …, 2023 | | 2023 |
Control and Calibration of GlueX Central Drift Chamber Using Gaussian Process Regression D McSpadden, T Jeske, N Jarvis, T Britton, D Lawrence, N Kalra Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA …, 2022 | | 2022 |
Investigating Anomalies in Compute Clusters: An Unsupervised Learning Approach Y Lu, J Ren, Y Alanazi, A Mohammed, D McSpadden, L Hild, M Jones, ... | | |
Forecasting Multi-Step-Ahead Street-Scale Nuisance Flooding Using Lstm and Seq2seq Lstm Surrogate Model for Real-Time Application: A Case Study for Norfolk, Virginia B Roy, JL Goodall, D McSpadden, S Goldenberg, M Schram Virginia, 0 | | |