关注
Yuzhu Mao
Yuzhu Mao
在 mails.tsinghua.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Communication-efficient federated learning with adaptive quantization
Y Mao, Z Zhao, G Yan, Y Liu, T Lan, L Song, W Ding
ACM Transactions on Intelligent Systems and Technology (TIST) 13 (4), 1-26, 2022
592022
Towards efficient communications in federated learning: A contemporary survey
Z Zhao, Y Mao, Y Liu, L Song, Y Ouyang, X Chen, W Ding
Journal of the Franklin Institute 360 (12), 8669-8703, 2023
532023
Safari: Sparsity-enabled federated learning with limited and unreliable communications
Y Mao, Z Zhao, M Yang, L Liang, Y Liu, W Ding, T Lan, XP Zhang
IEEE Transactions on Mobile Computing, 2023
122023
FL-TAC: Enhanced Fine-Tuning in Federated Learning via Low-Rank, Task-Specific Adapter Clustering
S Ping, Y Mao, Y Liu, XP Zhang, W Ding
arXiv preprint arXiv:2404.15384, 2024
22024
Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach
Y Mao, S Ping, Z Zhao, Y Liu, W Ding
arXiv preprint arXiv:2407.12074, 2024
12024
Optimizing Privacy-Accuracy Trade-off in DP-FL via Significant Gradient Perturbation
B Zhang, Y Mao, Z Tu, X He, P Ping, J Wu
2023 19th International Conference on Mobility, Sensing and Networking (MSN …, 2023
12023
Local Performance Trade-Off in Heterogeneous Federated Learning with Dynamic Client Grouping
Y Mao, J Wu, Y Cheng, P Ping, J Wu
2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems …, 2022
12022
AQUILA: Communication Efficient Federated Learning With Adaptive Quantization in Device Selection Strategy
Z Zhao, Y Mao, Z Shi, Y Liu, T Lan, W Ding, XP Zhang
IEEE Transactions on Mobile Computing, 2023
2023
AQUILA: Communication Efficient Federated Learning with Adaptive Quantization of Lazily-Aggregated Gradients
Z Zhao, Y Mao, Z Shi, Y Liu, T Lan, W Ding, XP Zhang
arXiv preprint arXiv:2308.00258, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–9